Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Omitted because of collinearity

    Dear,

    When using the following data

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input double ESGscore float(ESGcompensation tenure) double femaledummy float(independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage) double year
                     . .  .                  0 .8181818 11 43 1   7.37419  .05524752   .12475272  .10165016 2014
                     . .  .                  0 .8181818 11 44 1  7.416138    .094931 -.016281042  .10269745 2015
                 24.84 0  . .08333333333333333 .8333333 12 45 1  7.477378  .09853068    .1741487  .10458081 2016
                 23.81 0  . .08333333333333333 .8333333 12 46 1  7.466399  .08296714    .3389418  .11621959 2017
                 22.62 0  0 .08333333333333333 .8333333 12 47 1  7.626473  .10117321   .08878828  .09339573 2018
                 70.36 0  2 .09090909090909091 .9090909 11 77 0 10.621083  .18364143    .3576642   .4246824 2015
                 70.27 0  3 .15384615384615385 .9230769 13 78 0 10.601125   .1527675    .3279516   .4747825 2016
                 72.02 0  4 .15384615384615385 .9230769 13 79 0  10.65034  .13248113    .3400276   .4876839 2017
                 69.36 0  5 .16666666666666666 .9166667 12 80 0 10.704165   .0925388    .2206872     .56172 2018
     71.34000000000002 0  6                 .2        0 10 81 0  10.73134  .10040837    .1878603   .5574465 2019
                 63.25 1  .                 .2       .9 10 58 0  8.213719  .07676775   .21915583  .29520902 2018
                 62.58 1  0 .18181818181818182        0 11 59 0  8.152258 .068340935     .225777   .3145051 2019
                 77.27 0  . .36363636363636365 .8181818 11 81 1 10.217934  .09202623    .6417528   .3662164 2017
                 72.39 0  .  .3333333333333333 .8333333 12 82 1 10.328036    .112575    .8903543  .29127774 2018
     65.69000000000001 0  .                 .1       .8 10 41 1   8.59822       .056    .2571971      .5105 2012
     65.79999999999998 0  .                 .1       .7 10 42 1 8.5752735  .05579894    .4196974  .47452155 2013
     63.76999999999999 0  0 .09090909090909091 .7272727 11 43 1  8.613594 .073798776    .4057164   .5872047 2014
                 80.48 0  1                 .2       .6 10 44 1  8.291797  .04321077    .6225287   .7275651 2015
                 71.73 0  2  .2222222222222222 .6666667  9 45 1  8.359838  .04321077   1.4030088   .4320988 2016
     69.35000000000001 0  3                .25      .75  8 46 1  8.580919  .06468926   1.2907536   .3940678 2017
                 68.12 0  4  .2222222222222222 .7777778  9 47 1  8.775703  .12949955   1.5674034   .2743635 2018
                 78.76 1  0 .16666666666666666 .9166667 12 54 0 9.2533045  .14402303     .765121     .34414 2014
     79.16999999999999 1  1                 .2       .9 10 55 0  9.199775  .16095217    .7700632  .33713534 2015
                 73.57 1  2                .25     .875  8 56 0 9.1616125  .16982825    .8828155   .3447852 2016
                 79.04 1  3                .25     .875  8 57 0  9.010376  .13681555    .8072674  .21458586 2017
     84.77999999999999 1  4                .25     .875  8 58 0  9.097194  .14923117    .8526819   .1987976 2018
                     . .  .  .2222222222222222 .8888889  9 49 1  8.251221  .14258662   .17025746   .3058247 2010
                     . .  .                 .3       .8 10 50 1 8.3705015  .14142445     .252262  .25156882 2011
                     . .  0                 .3       .8 10 51 1  8.446127  .14459582   .25676554  .18746594 2012
                     . .  1  .2727272727272727 .8181818 11 52 1  8.509967  .15690304   .41635615  .14919493 2013
                     . .  2                 .4       .9 10 53 1  8.588211   .1983498    .6560078  .12991425 2014
     55.67999999999999 0  3 .45454545454545453 .9090909 11 54 1  8.630165   .2525639    .7763644  .10500536 2015
                 64.86 0  4 .45454545454545453 .9090909 11 55 1  8.687948  .18359767    .5901425  .29753062 2016
     60.86999999999999 0  5  .4444444444444444 .8888889  9 56 1  8.978786  .16294228    .4026812  .23919925 2017
                 54.26 0  6 .45454545454545453 .9090909 11 57 1  9.019664  .10749634    .2950791   .1927236 2018
                     . .  .  .1111111111111111 .7777778  9 40 1  7.451241  .08765724    .2051185   .2197327 2011
                     . .  0                 .1       .8 10 41 1  7.352441  .14945073    .5058599  .27173635 2012
                     . .  1 .14285714285714285 .8571429  7 42 1  7.400743  .13658576    .4850742   .2291917 2013
                     . .  2 .14285714285714285 .8571429  7 43 1  7.446702  .14374375    .5901712  .26651448 2014
     34.88999999999999 0  3 .14285714285714285 .8571429  7 44 1   7.54163  .17541023    .6101473  .25745597 2015
                  39.5 0  4 .14285714285714285 .8571429  7 45 1  7.571268  .11684445    .4182765   .3666088 2016
     37.67000000000001 0  5 .14285714285714285 .7142857  7 46 1  7.624082  .09757508   .23310487   .3813571 2017
    39.300000000000004 0  6 .14285714285714285 .8571429  7 47 1  7.706523  .08998518    .2245757     .35237 2018
                 50.32 0  7  .2857142857142857        0  7 48 1  7.697621  .07229212   .28666762   .4298165 2019
     66.64999999999999 1  .                .25 .9166667 12 92 0  10.57903  .15441585    .8198145  .29134193 2016
                    67 1  0 .23076923076923078 .8461539 13 93 0 10.609897   .1555391    .9738825   .3011097 2017
     72.66999999999999 1  1                .25 .9166667 12 94 0   10.6407  .15354924    .8560433  .28065014 2018
     74.06999999999998 1  2                .25        0 12 95 0 10.510777  .14460029   1.0402052  .28471854 2019
     52.63999999999999 0  .                  0 .7777778  9 43 1   6.97714  .16074465    .9323655  .04778805 2010
                 46.99 0  .                  0 .7777778  9 44 1  7.257653   .2039374    .6521157 .013800863 2011
    48.730000000000004 0  .                  0 .7777778  9 45 1  7.357927   .1783866      .80136          0 2012
                 47.07 0  .                  0      .75  8 46 1  7.491087  .19587673    .7419222          0 2013
                 43.57 0  .               .125     .875  8 47 1  7.736962   .2333378    1.345916          0 2014
                 47.31 0  .               .125     .875  8 48 1  8.088991  .29167736   1.4949583          0 2015
                 41.54 0  0               .125     .875  8 49 1  8.098339  .29167736   1.3172176          0 2016
     55.72000000000001 0  1  .1111111111111111 .7777778  9 50 1  8.202866  .29167736   1.4328263          0 2017
                 55.49 0  2  .1111111111111111 .7777778  9 51 1  8.260493  .29167736    1.248179          0 2018
     55.11000000000001 0  3  .2222222222222222        0  9 52 1  8.124683  .29167736   1.0762497          0 2019
     68.46000000000001 1 15 .07692307692307693 .7692308 13 49 1  10.43005  .17052774   .23008296   .1577297 2010
     73.16999999999999 1 16 .15384615384615385 .7692308 13 50 1  10.55753   .1661897  .020101056    .154768 2011
     69.93000000000004 1 17 .15384615384615385 .7692308 13 51 1 10.537177  .16677792  -.07162579    .186713 2012
                 69.98 1 18 .10526315789473684 .9473684 19 52 1 10.011624   .1438228   .05197859  .13561304 2013
     74.15999999999998 1 19 .14285714285714285 .9285714 14 53 1  9.281451   .1422054 -.029052453  .15519208 2014
                 76.76 1 20 .14285714285714285 .9285714 14 54 1  8.800264  .05588536  -.17600115    .193888 2015
     70.58000000000001 1 21 .18181818181818182 .9090909 11 55 1  8.468423  .04321077    .1664449  .23779742 2016
                 77.38 1 22 .16666666666666666 .9166667 12 56 1  8.606302  .04321077    .1561371   .3018778 2017
     76.59000000000002 1 23 .16666666666666666 .9166667 12 57 1  8.751949  .11864881   .09665885   .3112957 2018
                 78.64 1 24 .18181818181818182        0 11 58 1  8.778788  .12744468    .4281915   .3641539 2019
                 44.99 0  0  .3333333333333333 .7777778  9 47 1  8.496541  .07093683    .2410163  .07349521 2015
     52.77999999999999 1  1                 .4       .9 10 48 1  8.545722  .07710854    .4223332  .11761354 2016
                 64.86 1  2                 .3       .9 10 49 1  8.604032  .04490374    .3076631    .309028 2017
                 62.92 1  3                 .3       .9 10 50 1  8.770625   .0836113   .14714135  .25885597 2018
                 38.56 1  6               .125        0  8 36 0  6.530162  .06068184    .3098805   .3795676 2019
    63.149999999999984 1  5                .25 .9166667 12 68 0  9.703822  .08566877   .19364943   .3509643 2016
     61.03999999999999 1  6                .25 .9166667 12 69 0  9.643739  .08386336    .2442706   .3570218 2017
     61.72000000000002 1  7                .25 .9166667 12 70 0  9.692501  .07303918   .23051265   .3712887 2018
                     . . 16                  0 .5555556  9 24 1  5.436426  .11913456    .2167348  .22050823 2010
                     . . 17  .1111111111111111 .7777778  9 25 1  5.718438  .14718068     .427489  .19572096 2011
                     . . 18               .125     .875  8 26 1  5.903152  .18160243    .9738351  .13114357 2012
                     . . 19               .125     .875  8 27 1  5.942854   .1570837    .6841882  .11564601 2013
                     . . 20  .1111111111111111 .8888889  9 28 1  5.699219   .0466808    .1498511  .21033834 2014
                     . . 21               .125      .75  8 29 1  5.667747   .0631241   .27523154  .15416007 2015
                 19.42 0 22               .125     .875  8 30 1  5.743365  .08574598     .501839  .09524463 2016
    19.710000000000004 0 23               .125     .875  8 31 1   5.87225  .08169091   .42095006  .14467356 2017
                 21.23 0 24               .125     .875  8 32 1  6.118696  .08737051   .18997724  .16285902 2018
    19.180000000000003 0  .               .125     .875  8 14 1  7.812359  .14534338    .7824795   .3059801 2010
                 12.28 0  . .14285714285714285 .8571429  7 15 0     8.003  .16774504    .7361237  .29260954 2011
    25.729999999999997 0  . .14285714285714285 .8571429  7 16 0  8.111992   .1640335     .821292  .28010777 2012
                 29.59 0  .                .25     .875  8 17 0  8.187058   .1588553    .9790312   .2407432 2013
                 32.43 0  .                .25     .875  8 18 0  8.299525  .16152874    .9056726   .2669422 2014
                 33.37 0  .  .3333333333333333 .8888889  9 19 0  8.287602  .16411975    .8777345   .2914114 2015
                 30.75 0  0               .375     .875  8 20 0   8.25325  .14184132    .7473257   .3297666 2016
    24.979999999999997 0  1                 .3       .8 10 21 0   8.36641  .14399664    .9679301  .27889574 2017
                 42.07 0  2               .375     .875  8 22 0  8.485883  .14719321    .8264899   .3039281 2018
     46.90999999999998 0  . .15384615384615385 .9230769 13 28 1  9.619332  .15195695   .48613095   .3072713 2010
     47.48000000000001 0  . .16666666666666666 .9166667 12 29 1  9.653872  .13017945    .5043692   .4384604 2011
     50.02999999999999 0  0 .14285714285714285 .8571429 14 30 1  9.756436  .12983903    .6149842   .4885815 2012
     67.06999999999996 0  1 .15384615384615385 .9230769 13 31 1  9.834994  .11457089    .6768623   .4858677 2013
     64.41999999999999 0  2 .16666666666666666 .9166667 12 32 1  9.906632  .12978017    .8677925   .4450869 2014
                 68.27 0  3 .15384615384615385 .9230769 13 33 1  9.983315  .14964513     .840564    .440874 2015
    end
    format %ty year

    And running the following commands:

    -reg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year, cluster(gvkey)
    -reg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year i.SIC, cluster(gvkey)
    -xtreg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year, fe vce(cluster gvkey)

    With the last command, that includes firm fixed effects, the variable for the age of the firm (newfirmage) is dropped because of collinearity. What could be an explanation for this? Previously, when running a firm fixed effects regression using the firm age variable, this problem did not occur.

  • #2
    Well, within any given firm, the firm age is colinear with year: age = year_of_founding - year, But age_of_founding is a fixed attribute of the firm, and so is colinaer with the fixed effects. Putting all of that together, you have a colinearity among age, i.year, and the firm fixed effects. So something has to go, and Stata chose to drop the age variable.

    Comment


    • #3
      Yes, age variables can be tricky. On the one hand, the value of age does vary across time. On the other hand, age at time t is perfectly correlated with age at time t-1 (assuming all cases are updated at the same interval, e.g. data is collected every year). This has screwed me up more than once.
      -------------------------------------------
      Richard Williams, Notre Dame Dept of Sociology
      StataNow Version: 18.5 MP (2 processor)

      EMAIL: [email protected]
      WWW: https://www3.nd.edu/~rwilliam

      Comment

      Working...
      X