Dear all,
I have a question about the interpretation in STATA of the p values following the change of a reference category of a predictor.
I am studying the effect ("eff") of a treatment ("R") correcting for baseline ("bmpre", which can be 2,3,4 or 5), age ("AGE") and other covariates.
I inserted a baseline * age interaction factor into the model.
When I change the baseline reference category ("bmpre") from 2 to 5, the significance of the main effect of AGE changes.
How do you explain this?
Thank you all in advance.
PS: it's the first time I pubish a STATA output. I'm sorry if it won't be displayed in the best way.
. regress effpos ib1.R i.SEX c.AGE##i.bmpre i.dia
Source | SS df MS Number of obs = 114
-------------+---------------------------------- F(11, 102) = 14.46
Model | 106.194343 11 9.65403121 Prob > F = 0.0000
Residual | 68.0951304 102 .667599318 R-squared = 0.6093
-------------+---------------------------------- Adj R-squared = 0.5672
Total | 174.289474 113 1.54238472 Root MSE = .81707
------------------------------------------------------------------------------
effpos | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
0.R | .198729 .1944451 1.02 0.309 -.1869519 .5844099
1.SEX | -.1762637 .1651324 -1.07 0.288 -.5038029 .1512756
AGE | .0162547 .0436516 0.37 0.710 -.070328 .1028373
|
bmpre |
3 | .5395969 .4952407 1.09 0.278 -.4427107 1.521905
4 | .4252566 .9612166 0.44 0.659 -1.481312 2.331825
5 | 3.562841 .6331566 5.63 0.000 2.306978 4.818704
|
bmpre#c.AGE |
3 | -.0113402 .0458618 -0.25 0.805 -.1023069 .0796265
4 | .1434036 .149467 0.96 0.340 -.1530636 .4398708
5 | -.1795416 .0760778 -2.36 0.020 -.3304415 -.0286417
|
dia |
2 | -.2800586 .1732919 -1.62 0.109 -.6237822 .063665
3 | -.0587995 .2552767 -0.23 0.818 -.5651396 .4475407
|
_cons | .8820809 .4806346 1.84 0.069 -.0712556 1.835417
------------------------------------------------------------------------------
If I change the reference category of bmpre...
. regress effpos ib1.R i.SEX c.AGE##ib5.bmpre i.dia
Source | SS df MS Number of obs = 114
-------------+---------------------------------- F(11, 102) = 14.46
Model | 106.194343 11 9.65403121 Prob > F = 0.0000
Residual | 68.0951304 102 .667599318 R-squared = 0.6093
-------------+---------------------------------- Adj R-squared = 0.5672
Total | 174.289474 113 1.54238472 Root MSE = .81707
------------------------------------------------------------------------------
effpos | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
0.R | .198729 .1944451 1.02 0.309 -.1869519 .5844099
1.SEX | -.1762637 .1651324 -1.07 0.288 -.5038029 .1512756
AGE | -.1632869 .0629266 -2.59 0.011 -.2881015 -.0384724
|
bmpre |
2 | -3.562841 .6331566 -5.63 0.000 -4.818704 -2.306978
3 | -3.023244 .4799725 -6.30 0.000 -3.975268 -2.071221
4 | -3.137585 .9266609 -3.39 0.001 -4.975612 -1.299557
|
bmpre#c.AGE |
2 | .1795416 .0760778 2.36 0.020 .0286417 .3304415
3 | .1682014 .0645784 2.60 0.011 .0401105 .2962924
4 | .3229452 .1563563 2.07 0.041 .0128133 .6330771
|
dia |
2 | -.2800586 .1732919 -1.62 0.109 -.6237822 .063665
3 | -.0587995 .2552767 -0.23 0.818 -.5651396 .4475407
|
_cons | 4.444922 .4855814 9.15 0.000 3.481774 5.408071
------------------------------------------------------------------------------
I have a question about the interpretation in STATA of the p values following the change of a reference category of a predictor.
I am studying the effect ("eff") of a treatment ("R") correcting for baseline ("bmpre", which can be 2,3,4 or 5), age ("AGE") and other covariates.
I inserted a baseline * age interaction factor into the model.
When I change the baseline reference category ("bmpre") from 2 to 5, the significance of the main effect of AGE changes.
How do you explain this?
Thank you all in advance.
PS: it's the first time I pubish a STATA output. I'm sorry if it won't be displayed in the best way.
. regress effpos ib1.R i.SEX c.AGE##i.bmpre i.dia
Source | SS df MS Number of obs = 114
-------------+---------------------------------- F(11, 102) = 14.46
Model | 106.194343 11 9.65403121 Prob > F = 0.0000
Residual | 68.0951304 102 .667599318 R-squared = 0.6093
-------------+---------------------------------- Adj R-squared = 0.5672
Total | 174.289474 113 1.54238472 Root MSE = .81707
------------------------------------------------------------------------------
effpos | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
0.R | .198729 .1944451 1.02 0.309 -.1869519 .5844099
1.SEX | -.1762637 .1651324 -1.07 0.288 -.5038029 .1512756
AGE | .0162547 .0436516 0.37 0.710 -.070328 .1028373
|
bmpre |
3 | .5395969 .4952407 1.09 0.278 -.4427107 1.521905
4 | .4252566 .9612166 0.44 0.659 -1.481312 2.331825
5 | 3.562841 .6331566 5.63 0.000 2.306978 4.818704
|
bmpre#c.AGE |
3 | -.0113402 .0458618 -0.25 0.805 -.1023069 .0796265
4 | .1434036 .149467 0.96 0.340 -.1530636 .4398708
5 | -.1795416 .0760778 -2.36 0.020 -.3304415 -.0286417
|
dia |
2 | -.2800586 .1732919 -1.62 0.109 -.6237822 .063665
3 | -.0587995 .2552767 -0.23 0.818 -.5651396 .4475407
|
_cons | .8820809 .4806346 1.84 0.069 -.0712556 1.835417
------------------------------------------------------------------------------
If I change the reference category of bmpre...
. regress effpos ib1.R i.SEX c.AGE##ib5.bmpre i.dia
Source | SS df MS Number of obs = 114
-------------+---------------------------------- F(11, 102) = 14.46
Model | 106.194343 11 9.65403121 Prob > F = 0.0000
Residual | 68.0951304 102 .667599318 R-squared = 0.6093
-------------+---------------------------------- Adj R-squared = 0.5672
Total | 174.289474 113 1.54238472 Root MSE = .81707
------------------------------------------------------------------------------
effpos | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
0.R | .198729 .1944451 1.02 0.309 -.1869519 .5844099
1.SEX | -.1762637 .1651324 -1.07 0.288 -.5038029 .1512756
AGE | -.1632869 .0629266 -2.59 0.011 -.2881015 -.0384724
|
bmpre |
2 | -3.562841 .6331566 -5.63 0.000 -4.818704 -2.306978
3 | -3.023244 .4799725 -6.30 0.000 -3.975268 -2.071221
4 | -3.137585 .9266609 -3.39 0.001 -4.975612 -1.299557
|
bmpre#c.AGE |
2 | .1795416 .0760778 2.36 0.020 .0286417 .3304415
3 | .1682014 .0645784 2.60 0.011 .0401105 .2962924
4 | .3229452 .1563563 2.07 0.041 .0128133 .6330771
|
dia |
2 | -.2800586 .1732919 -1.62 0.109 -.6237822 .063665
3 | -.0587995 .2552767 -0.23 0.818 -.5651396 .4475407
|
_cons | 4.444922 .4855814 9.15 0.000 3.481774 5.408071
------------------------------------------------------------------------------
Comment