Dear All,
I am really getting crazy about the following point. Suppose I have the following model:
I estimate it using a multilevel logit model:
Then I calculate the marginal impact of age:
I want to replicate the above result manually:
I understood (possibly erroneously) that I could get the same value of p if I use:
This is in fact the case. Then, I would like to calculate the average marginal effects of age:
Surprisingly, the result is slightly different from the one obtained using margins:
Why this is the case? Is there any mistake in my procedure?
Thanks in advance for your insights.
Best
Dario
I am really getting crazy about the following point. Suppose I have the following model:
Code:
Prob[Y=1|X]=b0+b1*Age+zeta_i+error
Code:
webuse bangladesh, clear melogit c_use age || district:
Code:
margins, dydx(age) predict(mu) Average marginal effects Number of obs = 1,934 Model VCE: OIM Expression: Marginal predicted mean, predict(mu) dy/dx wrt: age ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- age | .0018956 .0011887 1.59 0.111 -.0004342 .0042253 ------------------------------------------------------------------------------
Code:
predict p, mu su p Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- p | 1,934 .3903534 .1014132 .1646984 .6360608
Code:
mat B= e(b) mat score double xb = B /* This should refer to the fixed part only*/ predict rint, reffects gen prob=invlogit(xb+rint) su prob Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- prob | 1,934 .3903534 .1014132 .1646984 .6360608
Code:
gen dpdx=prob*(1-prob) gen me_age=dpdx*_b[age] su me_age Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- me_age | 1,934 .0019474 .0001967 .0011766 .0021382
Code:
margins, dydx(age) predict(mu) Average marginal effects Number of obs = 1,934 Model VCE: OIM Expression: Marginal predicted mean, predict(mu) dy/dx wrt: age ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- age | .0018956 .0011887 1.59 0.111 -.0004342 .0042253 ------------------------------------------------------------------------------
Thanks in advance for your insights.
Best
Dario