In panel data spatial econometric regression analysis, the normality test of the dependent variable y is non-normal, but no conversion can become normal through normal conversion.,the command and resluts as follows:
. sktest y
Skewness and kurtosis tests for normality
----- Joint test -----
Variable | Obs Pr(skewness) Pr(kurtosis) Adj chi2(2) Prob>chi2
-------------+-----------------------------------------------------------------
y | 160 0.0000 0.0000 53.93 0.0000
.
. ladder y
Transformation Formula chi2(2) Prob > chi2
----------------------------------------------------------------
Cubic y^3 127.38 0.000
Square y^2 95.27 0.000
Identity y 53.93 0.000
Square root sqrt(y) 30.34 0.000
Log log(y) 11.83 0.003
1/(Square root) 1/sqrt(y) 10.49 0.005
Inverse 1/y 12.92 0.002
1/Square 1/(y^2) 14.60 0.001
1/Cubic 1/(y^3) 34.41 0.000
How to solve the problem of normality of the dependent variable? It is still panel data. If the sample size is relatively large, it is not necessary to test the normality of the dependent variable. If necessary, what should be done?
. sktest y
Skewness and kurtosis tests for normality
----- Joint test -----
Variable | Obs Pr(skewness) Pr(kurtosis) Adj chi2(2) Prob>chi2
-------------+-----------------------------------------------------------------
y | 160 0.0000 0.0000 53.93 0.0000
.
. ladder y
Transformation Formula chi2(2) Prob > chi2
----------------------------------------------------------------
Cubic y^3 127.38 0.000
Square y^2 95.27 0.000
Identity y 53.93 0.000
Square root sqrt(y) 30.34 0.000
Log log(y) 11.83 0.003
1/(Square root) 1/sqrt(y) 10.49 0.005
Inverse 1/y 12.92 0.002
1/Square 1/(y^2) 14.60 0.001
1/Cubic 1/(y^3) 34.41 0.000
How to solve the problem of normality of the dependent variable? It is still panel data. If the sample size is relatively large, it is not necessary to test the normality of the dependent variable. If necessary, what should be done?
Comment