Hi,
I cam across an example of a latent class model presented in the Stata conference 2021 using -gsem-. I understand what is being done but can't find a way to fit the model using Stata's -sem-path diagram (model building and estimation). Any suggestion on how to fit such model using the path diagram is much appreciated. The codes for the model and the data example given below:
The sample data is below:
Thanks.
I cam across an example of a latent class model presented in the Stata conference 2021 using -gsem-. I understand what is being done but can't find a way to fit the model using Stata's -sem-path diagram (model building and estimation). Any suggestion on how to fit such model using the path diagram is much appreciated. The codes for the model and the data example given below:
Code:
#delimit ; gsem (1.C: depress <- r@0 depbase@c1 risk@c2) (2.C: depress <- r depbase@c1 risk@c2) (1.C: comp <- _cons@-15, logit) (2.C: comp <- _cons@15, logit) (C <- age educ motivate econ assert single nonwhite), lclass(C 2) ; #delimit cr
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(depress depbase risk age educ motivate econ assert single nonwhite r c comp) -1.28 2.73 1.67 28.75 13 4 3.33 4.5 1 0 0 1 . -.27 2.18 1.55 28.27 13 5 4 3.25 1 0 0 1 . -.19 2.64 1.6 26.33 14 6.5 1.67 2.5 1 0 0 1 . -.82 2.18 1.5 39.09 16 6.5 5 5 1 1 0 1 . .36 2.64 2.01 37.92 11 5.5 5 2.75 1 1 0 1 . -1.18 2.45 1.89 28.81 12 4 4.33 2 1 0 0 1 . .45 2.91 2.15 38.7 12 5.5 4 1.75 1 0 0 1 . 0 2.82 1.88 39.27 12 4 2.33 1.75 0 0 0 1 . -1.45 2.45 1.7 29.92 17 4.5 3.67 3 1 0 0 1 . -.73 2.55 1.61 39.78 16 5.5 2.33 2.75 0 0 0 1 . -.81 2.45 1.62 33.97 13 4.5 3.67 3.75 1 0 0 1 . -.64 2.73 1.97 42.13 16 6.5 5 3.75 1 0 0 1 . -1.37 2.82 1.84 32.27 14 4.5 4 4.25 0 0 0 1 . -1.18 2.18 1.7 31.7 14 4.5 5 3 1 0 0 1 . -1.09 2.27 1.52 32.8 13 4.5 4.33 4.5 0 1 0 1 . -1.37 2.64 1.73 34.21 15 5.5 2.67 2.5 1 1 0 1 . .72 2.64 1.66 22.04 12 5 2.33 2.75 1 1 0 1 . -.27 1.91 1.5 25.04 13 5.5 4.33 2.5 0 0 0 1 . -.54 2.9 2.04 37.85 14 6 4.33 3.25 1 1 1 1 1 -1.27 2.82 2 35.33 13 5.5 4.67 3.5 0 1 1 0 0 .27 2.64 1.82 43.13 12 4.5 4.67 4.25 1 0 1 0 0 -1.27 2.45 1.85 26.3 13 5.5 4.67 2.75 1 0 1 0 0 .09 2.73 1.74 42.05 12 6.5 3.67 4.25 1 0 1 1 1 .37 2.36 1.56 18.79 12 6 3 3 1 0 1 0 0 -.36 2.27 1.49 39.99 13 6.5 3.33 3.5 1 0 1 1 1 -1.37 2.55 1.67 34.89 13 3.5 4 4.25 1 0 1 0 0 .54 2.73 1.9 35.57 12 5 4.67 4 1 0 1 1 1 1.45 2 1.44 18.47 11 5 3.67 2.75 1 0 1 0 0 -1 2.55 1.71 38.67 12 5.5 3.33 3 0 0 1 0 0 -.82 2.82 1.93 37.99 13 5 3.33 2.5 1 0 1 1 1 -1.16 2.45 1.8 71.38 10 5.5 4.67 3.25 0 0 1 1 1 -.18 2.45 1.85 47.61 10 5 4.67 2.75 0 0 1 1 1 .82 2.45 1.62 39.88 13 5 3.67 3.75 1 0 1 1 1 .46 2.18 1.47 50.96 9 5 3 2.75 1 0 1 1 1 -.72 2.27 1.61 31.05 10 4.5 3.67 2.75 1 0 1 1 1 1.27 2.55 1.82 20.58 12 6.5 4.33 3.25 0 0 1 0 0 -.46 2.1 1.58 24.98 14 5 5 3.75 1 1 1 0 0 -1.64 2.82 1.9 28.15 16 5.5 3.67 3.25 1 0 1 0 0 .18 2.09 1.48 26.96 12 5 4.33 3.75 1 0 1 0 0 -.91 2.27 1.45 33.42 17 5.5 3 3.5 1 0 1 1 1 .46 2.45 1.39 27.91 16 4.5 2.67 4.75 0 0 1 0 0 -.73 2.55 1.63 31.6 16 4.5 3.67 4.25 1 0 1 1 1 -.5 2.2 1.57 57.77 13 5 4.67 4 1 0 1 1 1 -1.82 3 2.1 51.13 16 6 4.33 3.25 1 0 1 1 1 -.55 2.55 1.82 39.87 12 5 4 2.75 0 0 1 0 0 -.55 2.73 1.71 48.98 17 4 4 5 1 0 1 0 0 -1 2.73 1.55 21.7 13 5 2 4 0 0 1 0 0 .18 2.55 1.86 40.59 16 4 4.67 3.25 1 1 1 1 1 -1.09 2.45 1.51 27.93 14 4.5 3 4 1 0 1 0 0 -1.37 2.55 1.84 48.29 13 6 4.33 3 1 0 1 1 1 -.09 2.09 1.67 44.82 17 6 4 1.5 1 0 1 1 1 end
Comment