Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Second-order factor analysis

    Dear StataListers,

    I am working on a project on which I am trying to estimate a factor analysis using 9 dummies variables.
    On a first step I estimated a first order confirmatory factor analysis, and I didn't have problems but when I tries to estimate
    a second order confirmatory factor analysis, the model runs and runs and runs and gives me the message that iterations are "not concave".
    Because of all the variables have two categories, I use the method adf (asympotically distribution free),
    but I also tried to estimate the model using the method (ml) combined with option vce (robust) and with vce (bootstrap). I have the same problem

    My question is the following: what does this "not concave" message mean? What should I do?

    My code:

    (1) FIRST ORDER CONFIRMATORY FACTOR ANALYSIS

    sem (Ayudaeconomica -> coberturamedica ITICBT ayudaexterna ,)
    (Zonaubicacion -> basural zonainundable villaemergencia,)
    (Infraestructura -> baño pisos techointerior hacinamiento),
    latent (Ayudaeconomica Zonaubicacion Infraestructura) method(adf)

    (2) SECOND ORDER CONFIRMATORY FACTOR ANALYSIS

    sem (Incapacidadeconomica -> coberturamedica ITICBT ayudaexterna ,)
    (Zonaubicacion -> basural zonainundable villaemergencia,)
    (Infraestructura -> baño pisos techointerior hacinamiento,)
    (Pobrezamultidimensional -> Infraestructura Incapacidadeconomica Zonaubicacion ),
    latent (Pobrezamultidimensional Incapacidadeconomica Zonaubicacion Infraestructura)
    method(adf) iterate ( 100 )

    RESULTS
    Endogenous variables

    Measurement: coberturamedica ITICBT ayudaexterna basural zonainundable villaemergencia baño pisos techointerior hacinamiento
    Latent: Incapacidadeconomica Zonaubicacion Infraestructura

    Exogenous variables
    Latent: Pobrezamultidimensional

    Fitting baseline model:

    Iteration 0: discrepancy = .43060013
    Iteration 1: discrepancy = .28040098
    Iteration 2: discrepancy = .28040098

    Fitting target model:
    Iteration 0: discrepancy = 11.835502 (not concave)
    Iteration 1: discrepancy = 1.3103552 (not concave)
    Iteration 2: discrepancy = .07200014 (not concave)
    Iteration 3: discrepancy = .06590574 (not concave)
    Iteration 4: discrepancy = .06213892 (not concave)
    Iteration 5: discrepancy = .06168234 (not concave)
    Iteration 6: discrepancy = .06140415 (not concave)
    Iteration 7: discrepancy = .06100357 (not concave)
    Iteration 8: discrepancy = .06040023 (not concave)
    Iteration 9: discrepancy = .06021822 (not concave)
    Iteration 10: discrepancy = .05955194 (not concave)
    Iteration 11: discrepancy = .0594336 (not concave)
    Iteration 12: discrepancy = .05862482 (not concave)
    Iteration 13: discrepancy = .0575207 (not concave)
    Iteration 14: discrepancy = .05601082 (not concave)
    Iteration 15: discrepancy = .05516756 (not concave)
    Iteration 16: discrepancy = .05490172 (not concave)
    Iteration 17: discrepancy = .05486508 (not concave)
    Iteration 18: discrepancy = .05484651 (not concave)
    Iteration 19: discrepancy = .05484535 (not concave)
    Iteration 20: discrepancy = .05484476 (not concave)
    Iteration 21: discrepancy = .05484462 (not concave)
    .
    .
    .
    .
    Iteration 98: discrepancy = .05484455 (not concave)
    Iteration 99: discrepancy = .05484455 (not concave)
    Iteration 100: discrepancy = .05484455 (not concave)
    convergence not achieved

    Structural equation model

    Number of obs = 15,254
    Estimation method = adf
    Discrepancy = .05484455

  • #2
    Sometimes it helps to model covariances between the first-order latent factors instead of modeling a second-order variance. Try something like the following and see whether it converges.
    Code:
    sem ///
        (coberturamedica ITICBT ayudaexterna <- Incapacidadeconomica) ///
        (basural zonainundable villaemergencia <- Zonaubicacion) ///
        (baño pisos techointerior hacinamiento <- Infraestructura), ///
            latent(Incapacidadeconomica Zonaubicacion Infraestructura) ///
            covariance(Incapacidadeconomica*Zonaubicacion ///
                Incapacidadeconomica*Infraestructura ///
                Zonaubicacion*Infraestructura) ///
            method(adf)

    Comment


    • #3
      Dear Joseph, if I do these, my model converges. Thank you so much
      But I have a problem. In my model, I need estimated the variable Pobrezamultidimensional. So, if a second-order confirmatory factor analysis doesn't work, what I should do ?

      Comment


      • #4
        The two models are equivalent, and so you can use the fitted values from the model that converges as constraints for the second-order CFA in order to allow it to converge. You probably don't need to constrain all of the parameter estimates to the fitted values, but rather only those that are having trouble, which are probably the three variances of the first-order factors. So try constraining those three parameter estimates first.

        I illustrate the method below using a fake dataset. For convenience in the illustration, instead of using the asymptotically distribution-free method, I use the tetrachoric correlation matrix of the manifest binary variables and use -sem- with summary statistics in a separate frame. Begin at the "Begin here" comment in the output below; the first part of the output just shows making of the fake dataset.. (I shorten the names of the manifest and latent variables for brevity, and I use only lower-case variable names for manifest variables.)

        I first show that the second-order CFA fails to converge (which is your problem). Then show that the equivalent model with three covariances (instead of two factor loadings and one second-order latent variable's variance) does converge, which is also what you observe with your dataset. Then I take the fitted values of the three sensitive parameter estimates (the variances of the three first-order latent factors) and use them to constrain the corresponding variances in the second-order CFA, and voilà. (Each step of the process is marked with a // comment so that you can more easily follow what's going on.)

        .ÿ
        .ÿversionÿ17.0

        .ÿ
        .ÿclearÿ*

        .ÿ
        .ÿsetÿseedÿ`=strreverse("1637544")'

        .ÿ
        .ÿquietlyÿsetÿobsÿ15254

        .ÿ
        .ÿquietlyÿdrawnormÿcoberturamedicaÿITICBTÿayudaexterna,ÿdoubleÿ///
        >ÿÿÿÿÿÿÿÿÿcorr(1ÿ0.5ÿ0.5ÿ\ÿ0.5ÿ1ÿ0.5ÿ\ÿ0.5ÿ0.5ÿ1)

        .ÿ
        .ÿquietlyÿdrawnormÿbasuralÿzonainundableÿvillaemergencia,ÿdoubleÿ///
        >ÿÿÿÿÿÿÿÿÿcorr(1ÿ0.5ÿ0.5ÿ\ÿ0.5ÿ1ÿ0.5ÿ\ÿ0.5ÿ0.5ÿ1)

        .ÿ
        .ÿquietlyÿdrawnormÿbanoÿpisosÿtechointeriorÿhacinamiento,ÿdoubleÿ///
        >ÿÿÿÿÿÿÿÿÿcorr(1ÿ0.5ÿ0.5ÿ0.5ÿ\ÿ0.5ÿ1ÿ0.5ÿ0.5ÿ\ÿ0.5ÿ0.5ÿ1ÿ0.5ÿ\ÿ0.5ÿ0.5ÿ0.5ÿ1)

        .ÿ
        .ÿgenerateÿdoubleÿcommonÿ=ÿrnormal()

        .ÿ
        .ÿlocalÿvarlist

        .ÿforeachÿvarÿofÿvarlistÿ_allÿ{
        ÿÿ2.ÿ
        .ÿÿÿÿÿÿÿÿÿifÿ"`var'"ÿ!=ÿ"common"ÿ{
        ÿÿ3.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿquietlyÿreplaceÿ`var'ÿ=ÿ(`var'ÿ+ÿcommon)ÿ>ÿ0
        ÿÿ4.ÿ
        .ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlocalÿnewÿ=ÿstrlower(substr("`var'",ÿ1,ÿ3))
        ÿÿ5.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿrenameÿ`var'ÿ`new'
        ÿÿ6.ÿ
        .ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlocalÿvarlistÿ`varlist'ÿ`new'
        ÿÿ7.ÿÿÿÿÿÿÿÿÿ}
        ÿÿ8.ÿ}

        .ÿdropÿcommon

        .ÿ
        .ÿquietlyÿtetrachoricÿ_all

        .ÿtempnameÿRho

        .ÿmatrixÿdefineÿ`Rho'ÿ=ÿr(Rho)

        .ÿframeÿcreateÿSSD

        .ÿframeÿSSDÿ{
        .ÿÿÿÿÿÿÿÿÿquietlyÿssdÿinitÿ`varlist'
        .ÿÿÿÿÿÿÿÿÿquietlyÿssdÿsetÿobsÿ`r(N)'
        .ÿÿÿÿÿÿÿÿÿquietlyÿssdÿsetÿcovariancesÿ(stata)ÿ`Rho'
        .ÿ}

        .ÿcwfÿSSD

        .ÿ
        .ÿ*
        .ÿ*ÿBeginÿhere
        .ÿ*
        .ÿ//ÿDemonstratesÿthatÿsecond-orderÿCFAÿwon'tÿconverge
        .ÿsemÿ///
        >ÿÿÿÿÿÿÿÿÿ(cobÿitiÿayuÿ<-ÿInc)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(basÿzonÿvilÿ<-ÿZon)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(banÿpisÿtecÿhacÿ<-ÿInf)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(IncÿZonÿInfÿ<-ÿPob),ÿiterate(10)ÿnocnsreportÿnodescribe

        Fittingÿtargetÿmodel:
        Iterationÿ0:ÿÿÿlogÿlikelihoodÿ=ÿ-167604.39ÿÿ(notÿconcave)
        Iterationÿ1:ÿÿÿlogÿlikelihoodÿ=ÿ-166014.25ÿÿ(notÿconcave)
        Iterationÿ2:ÿÿÿlogÿlikelihoodÿ=ÿ-162506.63ÿÿ(notÿconcave)
        Iterationÿ3:ÿÿÿlogÿlikelihoodÿ=ÿ-161810.35ÿÿ(notÿconcave)
        Iterationÿ4:ÿÿÿlogÿlikelihoodÿ=ÿ-161256.49ÿÿ
        Iterationÿ5:ÿÿÿlogÿlikelihoodÿ=ÿ-161049.91ÿÿ(backedÿup)
        Iterationÿ6:ÿÿÿlogÿlikelihoodÿ=ÿÿ-161044.6ÿÿ(backedÿup)
        Iterationÿ7:ÿÿÿlogÿlikelihoodÿ=ÿ-161043.95ÿÿ(backedÿup)
        Iterationÿ8:ÿÿÿlogÿlikelihoodÿ=ÿ-161043.62ÿÿ(backedÿup)
        Iterationÿ9:ÿÿÿlogÿlikelihoodÿ=ÿ-161043.46ÿÿ(backedÿup)
        Iterationÿ10:ÿÿlogÿlikelihoodÿ=ÿ-161043.42ÿÿ(backedÿup)
        convergenceÿnotÿachieved

        StructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿ=ÿ15,254
        Estimationÿmethod:ÿml

        Logÿlikelihoodÿ=ÿ-161043.42

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOIM
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿCoefficientÿÿstd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        Structuralÿÿÿ|
        ÿÿIncÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿPobÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿZonÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿPobÿ|ÿÿÿ.3404844ÿÿÿ.0103168ÿÿÿÿ33.00ÿÿÿ0.000ÿÿÿÿÿ.3202638ÿÿÿÿ.3607051
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿInfÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿPobÿ|ÿÿÿ.3388309ÿÿÿ.0102503ÿÿÿÿ33.06ÿÿÿ0.000ÿÿÿÿÿ.3187406ÿÿÿÿ.3589213
        -------------+----------------------------------------------------------------
        Measurementÿÿ|
        ÿÿcobÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿitiÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.9938629ÿÿÿ.0076618ÿÿÿ129.72ÿÿÿ0.000ÿÿÿÿÿÿ.978846ÿÿÿÿÿ1.00888
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿayuÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.9844135ÿÿÿ.0076637ÿÿÿ128.45ÿÿÿ0.000ÿÿÿÿÿ.9693929ÿÿÿÿ.9994341
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿbasÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿzonÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ1.002529ÿÿÿÿ.008183ÿÿÿ122.51ÿÿÿ0.000ÿÿÿÿÿ.9864902ÿÿÿÿ1.018567
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿvilÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ.9940628ÿÿÿÿ.008137ÿÿÿ122.17ÿÿÿ0.000ÿÿÿÿÿ.9781145ÿÿÿÿ1.010011
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿbanÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿpisÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ.9901335ÿÿÿ.0081137ÿÿÿ122.03ÿÿÿ0.000ÿÿÿÿÿ.9742309ÿÿÿÿ1.006036
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿtecÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ1.002295ÿÿÿ.0081095ÿÿÿ123.59ÿÿÿ0.000ÿÿÿÿÿ.9864008ÿÿÿÿÿ1.01819
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿhacÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ1.000431ÿÿÿ.0081067ÿÿÿ123.41ÿÿÿ0.000ÿÿÿÿÿ.9845419ÿÿÿÿÿ1.01632
        -------------+----------------------------------------------------------------
        ÿÿÿvar(e.cob)|ÿÿÿ.2304032ÿÿÿÿ.004275ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2221748ÿÿÿÿ.2389363
        ÿÿÿvar(e.iti)|ÿÿÿÿ.235178ÿÿÿÿ.004204ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2270811ÿÿÿÿ.2435636
        ÿÿÿvar(e.ayu)|ÿÿÿ.2499208ÿÿÿ.0042726ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2416854ÿÿÿÿ.2584368
        ÿÿÿvar(e.bas)|ÿÿÿ.2445579ÿÿÿ.0045219ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2358537ÿÿÿÿ.2535832
        ÿÿÿvar(e.zon)|ÿÿÿ.2428445ÿÿÿ.0044387ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2342987ÿÿÿÿÿ.251702
        ÿÿÿvar(e.vil)|ÿÿÿ.2556065ÿÿÿ.0044785ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2469778ÿÿÿÿ.2645366
        ÿÿÿvar(e.ban)|ÿÿÿ.2579581ÿÿÿ.0040561ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2501295ÿÿÿÿ.2660317
        ÿÿÿvar(e.pis)|ÿÿÿ.2751324ÿÿÿ.0041577ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.267103ÿÿÿÿ.2834032
        ÿÿÿvar(e.tec)|ÿÿÿÿ.257198ÿÿÿ.0040116ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2494545ÿÿÿÿÿ.265182
        ÿÿÿvar(e.hac)|ÿÿÿ.2599377ÿÿÿ.0040369ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2521447ÿÿÿÿ.2679715
        ÿÿÿvar(e.Inc)|ÿÿÿ3.46e-06ÿÿÿ.0210959ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.ÿÿÿÿÿÿÿÿÿÿÿ.
        ÿÿÿvar(e.Zon)|ÿÿÿ.6527724ÿÿÿ.0183323ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.6178127ÿÿÿÿ.6897104
        ÿÿÿvar(e.Inf)|ÿÿÿ.6386708ÿÿÿÿ.018543ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.6033419ÿÿÿÿ.6760684
        ÿÿÿÿÿvar(Pob)|ÿÿÿ.7256903ÿÿÿ.0137771ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.6991838ÿÿÿÿ.7532017
        ------------------------------------------------------------------------------
        LRÿtestÿofÿmodelÿvs.ÿsaturated:ÿchi2(32)ÿ=ÿ6981.06ÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿ=ÿ0.0000
        Warning:ÿConvergenceÿnotÿachieved.

        .ÿ
        .ÿ//ÿDemonstratesÿthatÿtheÿequivalentÿmodelÿwithÿcovariancesÿdoesÿconverge
        .ÿsemÿ///
        >ÿÿÿÿÿÿÿÿÿ(cobÿitiÿayuÿ<-ÿInc)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(basÿzonÿvilÿ<-ÿZon)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(banÿpisÿtecÿhacÿ<-ÿInf),ÿ///
        >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿcovariance(Inc*ZonÿInc*InfÿZon*Inf)ÿnocnsreportÿnodescribeÿnolog

        StructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿ=ÿ15,254
        Estimationÿmethod:ÿml

        Logÿlikelihoodÿ=ÿ-157623.76

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOIM
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿCoefficientÿÿstd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        Measurementÿÿ|
        ÿÿcobÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿitiÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.9968999ÿÿÿ.0070527ÿÿÿ141.35ÿÿÿ0.000ÿÿÿÿÿ.9830768ÿÿÿÿ1.010723
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿayuÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.9873895ÿÿÿ.0070858ÿÿÿ139.35ÿÿÿ0.000ÿÿÿÿÿ.9735015ÿÿÿÿ1.001277
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿbasÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿzonÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ1.001939ÿÿÿ.0073116ÿÿÿ137.04ÿÿÿ0.000ÿÿÿÿÿ.9876091ÿÿÿÿÿ1.01627
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿvilÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ.9933183ÿÿÿ.0073277ÿÿÿ135.56ÿÿÿ0.000ÿÿÿÿÿ.9789563ÿÿÿÿÿ1.00768
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿbanÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿpisÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿÿ.988855ÿÿÿ.0073133ÿÿÿ135.21ÿÿÿ0.000ÿÿÿÿÿ.9745212ÿÿÿÿ1.003189
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿtecÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ1.000775ÿÿÿ.0072651ÿÿÿ137.75ÿÿÿ0.000ÿÿÿÿÿ.9865355ÿÿÿÿ1.015014
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿhacÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ.9988858ÿÿÿ.0072792ÿÿÿ137.22ÿÿÿ0.000ÿÿÿÿÿ.9846188ÿÿÿÿ1.013153
        -------------+----------------------------------------------------------------
        ÿÿÿvar(e.cob)|ÿÿÿ.2318613ÿÿÿ.0039967ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2241588ÿÿÿÿ.2398285
        ÿÿÿvar(e.iti)|ÿÿÿ.2366161ÿÿÿ.0040363ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2288358ÿÿÿÿ.2446609
        ÿÿÿvar(e.ayu)|ÿÿÿ.2511107ÿÿÿÿ.004127ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2431508ÿÿÿÿ.2593313
        ÿÿÿvar(e.bas)|ÿÿÿ.2459938ÿÿÿ.0041636ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2379672ÿÿÿÿ.2542911
        ÿÿÿvar(e.zon)|ÿÿÿ.2430665ÿÿÿ.0041542ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2350592ÿÿÿÿ.2513465
        ÿÿÿvar(e.vil)|ÿÿÿ.2560353ÿÿÿ.0042296ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2478783ÿÿÿÿ.2644608
        ÿÿÿvar(e.ban)|ÿÿÿ.2587171ÿÿÿ.0039103ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2511655ÿÿÿÿ.2664957
        ÿÿÿvar(e.pis)|ÿÿÿ.2751468ÿÿÿ.0040522ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2673182ÿÿÿÿ.2832048
        ÿÿÿvar(e.tec)|ÿÿÿÿ.257568ÿÿÿ.0039009ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2500347ÿÿÿÿ.2653282
        ÿÿÿvar(e.hac)|ÿÿÿÿ.260368ÿÿÿ.0039233ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.252791ÿÿÿÿ.2681721
        ÿÿÿÿÿvar(Inc)|ÿÿÿ.7680732ÿÿÿ.0115314ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.7458014ÿÿÿÿÿÿ.79101
        ÿÿÿÿÿvar(Zon)|ÿÿÿ.7539406ÿÿÿ.0115136ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.7317088ÿÿÿÿÿ.776848
        ÿÿÿÿÿvar(Inf)|ÿÿÿ.7412173ÿÿÿ.0113505ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.7193013ÿÿÿÿ.7638011
        -------------+----------------------------------------------------------------
        ÿcov(Inc,Zon)|ÿÿÿ.5069948ÿÿÿ.0084842ÿÿÿÿ59.76ÿÿÿ0.000ÿÿÿÿÿÿ.490366ÿÿÿÿ.5236236
        ÿcov(Inc,Inf)|ÿÿÿ.5033596ÿÿÿÿ.008397ÿÿÿÿ59.95ÿÿÿ0.000ÿÿÿÿÿ.4869018ÿÿÿÿ.5198173
        ÿcov(Zon,Inf)|ÿÿÿ.5012012ÿÿÿ.0083672ÿÿÿÿ59.90ÿÿÿ0.000ÿÿÿÿÿ.4848018ÿÿÿÿ.5176006
        ------------------------------------------------------------------------------
        LRÿtestÿofÿmodelÿvs.ÿsaturated:ÿchi2(32)ÿ=ÿ141.75ÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿ=ÿ0.0000

        .ÿ
        .ÿ//ÿSettingÿupÿtheÿnecessaryÿconstraintsÿtoÿgetÿconvergence
        .ÿtempnameÿIncÿZonÿInf

        .ÿscalarÿdefineÿ`Inc'ÿ=ÿ_b[/:var(Inc)]

        .ÿscalarÿdefineÿ`Zon'ÿ=ÿ_b[/:var(Zon)]

        .ÿscalarÿdefineÿ`Inf'ÿ=ÿ_b[/:var(Inf)]

        .ÿconstraintÿdefineÿ1ÿ_b[/:var(e.Inc)]ÿ=ÿ`Inc'

        .ÿconstraintÿdefineÿ2ÿ_b[/:var(e.Zon)]ÿ=ÿ`Zon'

        .ÿconstraintÿdefineÿ3ÿ_b[/:var(e.Inf)]ÿ=ÿ`Inf'

        .ÿ
        .ÿ//ÿWithÿconstraints,ÿtheÿsecond-orderÿCFAÿwillÿconvergeÿ(noteÿidenticalÿlogÿlikelihoodÿetc.)
        .ÿsemÿ///
        >ÿÿÿÿÿÿÿÿÿ(cobÿitiÿayuÿ<-ÿInc)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(basÿzonÿvilÿ<-ÿZon)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(banÿpisÿtecÿhacÿ<-ÿInf)ÿ///
        >ÿÿÿÿÿÿÿÿÿ(IncÿZonÿInfÿ<-ÿPob),ÿconstraints(1/3)ÿnocnsreportÿnodescribe

        Fittingÿtargetÿmodel:
        Iterationÿ0:ÿÿÿlogÿlikelihoodÿ=ÿ-167604.31ÿÿ(notÿconcave)
        Iterationÿ1:ÿÿÿlogÿlikelihoodÿ=ÿ-165995.74ÿÿ(notÿconcave)
        Iterationÿ2:ÿÿÿlogÿlikelihoodÿ=ÿ-163015.49ÿÿ
        Iterationÿ3:ÿÿÿlogÿlikelihoodÿ=ÿ-161541.19ÿÿ
        Iterationÿ4:ÿÿÿlogÿlikelihoodÿ=ÿ-158195.27ÿÿ(notÿconcave)
        Iterationÿ5:ÿÿÿlogÿlikelihoodÿ=ÿ-158078.93ÿÿ(notÿconcave)
        Iterationÿ6:ÿÿÿlogÿlikelihoodÿ=ÿ-157990.51ÿÿ(notÿconcave)
        Iterationÿ7:ÿÿÿlogÿlikelihoodÿ=ÿ-157928.12ÿÿ
        Iterationÿ8:ÿÿÿlogÿlikelihoodÿ=ÿ-157871.39ÿÿ
        Iterationÿ9:ÿÿÿlogÿlikelihoodÿ=ÿÿ-157763.9ÿÿ
        Iterationÿ10:ÿÿlogÿlikelihoodÿ=ÿ-157634.37ÿÿ
        Iterationÿ11:ÿÿlogÿlikelihoodÿ=ÿ-157625.05ÿÿ
        Iterationÿ12:ÿÿlogÿlikelihoodÿ=ÿ-157623.77ÿÿ
        Iterationÿ13:ÿÿlogÿlikelihoodÿ=ÿ-157623.76ÿÿ

        StructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿ=ÿ15,254
        Estimationÿmethod:ÿml

        Logÿlikelihoodÿ=ÿ-157623.76

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOIM
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿCoefficientÿÿstd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        Structuralÿÿÿ|
        ÿÿIncÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿPobÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿZonÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿPobÿ|ÿÿÿ1.005677ÿÿÿ.0264269ÿÿÿÿ38.05ÿÿÿ0.000ÿÿÿÿÿ.9538809ÿÿÿÿ1.057473
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿInfÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿPobÿ|ÿÿÿ1.001138ÿÿÿ.0264607ÿÿÿÿ37.83ÿÿÿ0.000ÿÿÿÿÿ.9492755ÿÿÿÿÿÿÿ1.053
        -------------+----------------------------------------------------------------
        Measurementÿÿ|
        ÿÿcobÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.5805777ÿÿÿ.0072324ÿÿÿÿ80.27ÿÿÿ0.000ÿÿÿÿÿ.5664024ÿÿÿÿÿ.594753
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿitiÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.5787779ÿÿÿ.0071932ÿÿÿÿ80.46ÿÿÿ0.000ÿÿÿÿÿ.5646794ÿÿÿÿ.5928764
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿayuÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿIncÿ|ÿÿÿ.5732563ÿÿÿ.0071614ÿÿÿÿ80.05ÿÿÿ0.000ÿÿÿÿÿ.5592203ÿÿÿÿ.5872923
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿbasÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ.5748249ÿÿÿ.0073459ÿÿÿÿ78.25ÿÿÿ0.000ÿÿÿÿÿ.5604271ÿÿÿÿ.5892226
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿzonÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ.5759397ÿÿÿ.0073335ÿÿÿÿ78.54ÿÿÿ0.000ÿÿÿÿÿ.5615662ÿÿÿÿ.5903132
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿvilÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿZonÿ|ÿÿÿ.5709841ÿÿÿ.0073119ÿÿÿÿ78.09ÿÿÿ0.000ÿÿÿÿÿ.5566531ÿÿÿÿ.5853151
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿbanÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ.5732906ÿÿÿ.0072495ÿÿÿÿ79.08ÿÿÿ0.000ÿÿÿÿÿ.5590817ÿÿÿÿ.5874994
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿpisÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ.5669012ÿÿÿÿ.007212ÿÿÿÿ78.61ÿÿÿ0.000ÿÿÿÿÿ.5527659ÿÿÿÿ.5810365
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿtecÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ.5737348ÿÿÿ.0072467ÿÿÿÿ79.17ÿÿÿ0.000ÿÿÿÿÿ.5595316ÿÿÿÿÿ.587938
        ÿÿ-----------+----------------------------------------------------------------
        ÿÿhacÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿInfÿ|ÿÿÿ.5726518ÿÿÿ.0072494ÿÿÿÿ78.99ÿÿÿ0.000ÿÿÿÿÿ.5584432ÿÿÿÿ.5868603
        -------------+----------------------------------------------------------------
        ÿÿÿvar(e.cob)|ÿÿÿ.2318613ÿÿÿ.0039967ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2241588ÿÿÿÿ.2398285
        ÿÿÿvar(e.iti)|ÿÿÿ.2366161ÿÿÿ.0040363ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2288358ÿÿÿÿ.2446609
        ÿÿÿvar(e.ayu)|ÿÿÿ.2511108ÿÿÿÿ.004127ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2431508ÿÿÿÿ.2593313
        ÿÿÿvar(e.bas)|ÿÿÿ.2459938ÿÿÿ.0041636ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2379672ÿÿÿÿ.2542911
        ÿÿÿvar(e.zon)|ÿÿÿ.2430665ÿÿÿ.0041542ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2350592ÿÿÿÿ.2513465
        ÿÿÿvar(e.vil)|ÿÿÿ.2560353ÿÿÿ.0042296ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2478783ÿÿÿÿ.2644608
        ÿÿÿvar(e.ban)|ÿÿÿ.2587171ÿÿÿ.0039103ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2511655ÿÿÿÿ.2664957
        ÿÿÿvar(e.pis)|ÿÿÿ.2751468ÿÿÿ.0040522ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2673182ÿÿÿÿ.2832048
        ÿÿÿvar(e.tec)|ÿÿÿÿ.257568ÿÿÿ.0039009ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2500347ÿÿÿÿ.2653282
        ÿÿÿvar(e.hac)|ÿÿÿÿ.260368ÿÿÿ.0039233ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.252791ÿÿÿÿ.2681721
        ÿÿÿvar(e.Inc)|ÿÿÿ.7680732ÿÿ(constrained)
        ÿÿÿvar(e.Zon)|ÿÿÿ.7539406ÿÿ(constrained)
        ÿÿÿvar(e.Inf)|ÿÿÿ.7412173ÿÿ(constrained)
        ÿÿÿÿÿvar(Pob)|ÿÿÿ1.510599ÿÿÿ.0537776ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ1.40879ÿÿÿÿ1.619765
        ------------------------------------------------------------------------------
        LRÿtestÿofÿmodelÿvs.ÿsaturated:ÿchi2(32)ÿ=ÿ141.75ÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿ=ÿ0.0000

        .ÿ
        .ÿexit

        endÿofÿdo-file


        .

        Comment


        • #5
          Thank you so much. I did something like you. I restringed all var (e.) of the manifest variables because I had missing standard errors and I read that this parametres were unidentified. After that, I get a converges model.
          I have one more question. If I keep such a restricted model, is it valid for other databases? Or do I need to change the values of the restrictions?

          Comment


          • #6
            I'm glad to hear that it worked for you.

            To answer your new question: You need to fit a new model to each different set of data. So, for this, you will need to change the values to those of the new model.

            Comment


            • #7
              Thank you !!!!!!

              Comment

              Working...
              X