Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Originally posted by FernandoRios View Post
    Hi Rattiya
    That is not necessary the case
    You need to do a careful analysis of the "event" dynamics, and use that as additional evidence to say whether or not parallel trends hold
    Also, you may need to control for other factors, or consider different function specifications (logs? )
    HTH
    F
    Hi FernandoRios , thank you. I ran the "estat event" postestimation, and the result is as follow:
    Coefficient Std. err. z P>z [95% conf. interval]
    Pre_avg 0.000 0.000 -2.480 0.013 0.000 0.000
    Post_avg 0.000 0.000 0.140 0.885 -0.001 0.001
    Tm25 0.000 0.000 1.510 0.132 0.000 0.000
    Tm24 0.000 0.000 -2.530 0.011 0.000 0.000
    Tm23 0.000 0.000 1.460 0.143 0.000 0.000
    Tm22 0.000 0.000 -1.030 0.301 0.000 0.000
    Tm21 0.000 0.000 1.820 0.069 0.000 0.000
    Tm20 0.000 0.000 -1.420 0.157 0.000 0.000
    Tm19 0.000 0.000 -0.510 0.611 0.000 0.000
    Tm18 0.000 0.000 -0.860 0.391 0.000 0.000
    Tm17 0.000 0.000 1.070 0.283 0.000 0.000
    Tm16 0.000 0.000 0.100 0.924 0.000 0.000
    Tm15 0.000 0.000 -0.100 0.917 0.000 0.000
    Tm14 0.000 0.000 1.070 0.283 0.000 0.000
    Tm13 0.000 0.000 -1.990 0.046 0.000 0.000
    Tm12 0.000 0.000 -2.370 0.018 0.000 0.000
    Tm11 0.000 0.000 3.830 0.000 0.000 0.000
    Tm10 0.000 0.000 0.590 0.558 0.000 0.000
    Tm9 0.000 0.000 -2.820 0.005 0.000 0.000
    Tm8 0.000 0.000 1.870 0.061 0.000 0.000
    Tm7 0.000 0.000 -0.330 0.740 0.000 0.000
    Tm6 0.000 0.000 -1.130 0.260 0.000 0.000
    Tm5 0.000 0.000 0.060 0.949 0.000 0.000
    Tm4 0.000 0.000 -1.470 0.143 0.000 0.000
    Tm3 0.000 0.000 -1.060 0.288 0.000 0.000
    Tm2 0.000 0.000 0.850 0.397 0.000 0.000
    Tm1 0.000 0.000 -2.130 0.033 -0.001 0.000
    Tp0 0.000 0.000 0.990 0.322 0.000 0.001
    Tp1 0.000 0.000 1.740 0.082 0.000 0.000
    Tp2 0.000 0.000 0.110 0.909 -0.001 0.001
    Tp3 0.000 0.000 -1.030 0.303 0.000 0.000
    Tp4 0.000 0.000 -0.690 0.489 -0.001 0.000
    Tp5 0.000 0.000 0.090 0.930 -0.001 0.001
    Tp6 0.001 0.002 0.550 0.582 -0.002 0.004
    Tp7 0.000 0.001 0.500 0.618 -0.001 0.002
    Tp8 0.000 0.001 0.020 0.984 -0.001 0.001
    Tp9 -0.001 0.000 -2.510 0.012 -0.001 0.000
    Tp10 0.000 0.001 -0.310 0.760 -0.002 0.001
    Do I understand correctly that: some coefficients of the pre-treatment years (Tm) are significant, implying that there are significant differences between treatment and control groups in the pre-treatment period? And this also confrims that why the pararell trend assumption is not held in my case?..

    Kind regards, Rattiya

    Comment


    • Thanks FernandoRios .
      One more question, so I have run the code and for this following result.


      Number of obs = 10,416
      Outcome model : least squares
      Treatment model: inverse probability
      ------------------------------------------------------------------------------
      | Coefficient Std. err. z P>|z| [95% conf. interval]
      -------------+----------------------------------------------------------------
      g2000 |
      t_2000_2007 | 0 (omitted)
      t_2000_2014 | 0 (omitted)
      -------------+----------------------------------------------------------------
      g2007 |
      t_2000_2007 | 1.149023 .0673463 17.06 0.000 1.017026 1.281019
      t_2000_2014 | .5029631 .0807806 6.23 0.000 .3446359 .6612902
      -------------+----------------------------------------------------------------
      g2014 |
      t_2000_2007 | .0408478 .059203 0.69 0.490 -.0751879 .1568834
      t_2007_2014 | .7401725 .0449899 16.45 0.000 .6519939 .8283512
      ------------------------------------------------------------------------------
      Control: Never Treated


      and then I tried to graph this by "events",

      csdid_stats event, wboot rseed(1)
      ---------------------------------------------------------------------
      | Coefficient Std. err. t [95% conf. interval]
      ------------+--------------------------------------------------------
      Pre_avg | .0408478 .0588727 0.69 -.1047298 .1864253
      Post_avg | .7007282 .0533918 13.12 .5687035 .8327528
      Tm7 | .0408478 .0588727 0.69 -.1047298 .1864253
      Tp0 | .8984933 .0425183 21.13 .7933563 1.00363
      Tp7 | .5029631 .0783518 6.42 .3092186 .6967075
      ---------------------------------------------------------------------

      Can you tell me what is the mean of pre_avg, post_avg, Tm7, Tp0, and Tp7?

      And by "Group"...

      csdid_stats group, wboot rseed(1)

      ---------------------------------------------------------------------
      | Coefficient Std. err. t [95% conf. interval]
      ------------+--------------------------------------------------------
      GAverage | .7734051 .040387 19.15 .6827671 .8640432
      G2007 | .825993 .0685029 12.06 .6722563 .9797296
      G2014 | .7401725 .0459832 16.10 .6369755 .8433696
      ---------------------------------------------------------------------

      What is the mean of GAverage here? Because I think it should be G2000, but I don't have my Group 2000 estimation in the first table above.

      Thank you in advance!

      Best,

      Ayu

      Comment


      • Originally posted by Rattiya Lippe View Post

        Kind regards, Rattiya
        Hi there
        The results you show are very odd. So even tho you are making a reasonable interpretation of the results, most coefficients seem t obe zero. So there is nothing to interpret!
        Perhaps you copy pasted the wrong results?
        F

        Comment


        • Originally posted by Ayu Fitriani View Post
          Thanks FernandoRios .
          One more question, so I have run the code and for this following result.


          Number of obs = 10,416
          Outcome model : least squares
          Treatment model: inverse probability
          ------------------------------------------------------------------------------
          | Coefficient Std. err. z P>|z| [95% conf. interval]
          -------------+----------------------------------------------------------------
          g2000 |
          t_2000_2007 | 0 (omitted)
          t_2000_2014 | 0 (omitted)
          -------------+----------------------------------------------------------------
          g2007 |
          t_2000_2007 | 1.149023 .0673463 17.06 0.000 1.017026 1.281019
          t_2000_2014 | .5029631 .0807806 6.23 0.000 .3446359 .6612902
          -------------+----------------------------------------------------------------
          g2014 |
          t_2000_2007 | .0408478 .059203 0.69 0.490 -.0751879 .1568834
          t_2007_2014 | .7401725 .0449899 16.45 0.000 .6519939 .8283512
          ------------------------------------------------------------------------------
          Control: Never Treated


          and then I tried to graph this by "events",

          csdid_stats event, wboot rseed(1)
          ---------------------------------------------------------------------
          | Coefficient Std. err. t [95% conf. interval]
          ------------+--------------------------------------------------------
          Pre_avg | .0408478 .0588727 0.69 -.1047298 .1864253
          Post_avg | .7007282 .0533918 13.12 .5687035 .8327528
          Tm7 | .0408478 .0588727 0.69 -.1047298 .1864253
          Tp0 | .8984933 .0425183 21.13 .7933563 1.00363
          Tp7 | .5029631 .0783518 6.42 .3092186 .6967075
          ---------------------------------------------------------------------

          Can you tell me what is the mean of pre_avg, post_avg, Tm7, Tp0, and Tp7?

          And by "Group"...

          csdid_stats group, wboot rseed(1)

          ---------------------------------------------------------------------
          | Coefficient Std. err. t [95% conf. interval]
          ------------+--------------------------------------------------------
          GAverage | .7734051 .040387 19.15 .6827671 .8640432
          G2007 | .825993 .0685029 12.06 .6722563 .9797296
          G2014 | .7401725 .0459832 16.10 .6369755 .8433696
          ---------------------------------------------------------------------

          What is the mean of GAverage here? Because I think it should be G2000, but I don't have my Group 2000 estimation in the first table above.

          Thank you in advance!

          Best,

          Ayu
          Hi Ayu]
          1. tmX tpX stand for T-X or T+X. Where X is the relative period to the treatment. In your case, with data spanning 7 years apart, it showing Tp7
          2. Avg is as the name suggest, the Average of all Pre or Post treatment ATTs
          3 GroupAvg are the group Averages. See Callaway and Sant'Anna paper to see the exact definitions. There is no G2000 , because you never observe data Before 2000 thus no ATT can be estimated for that cohort
          F

          Comment


          • Originally posted by FernandoRios View Post

            Hi there
            The results you show are very odd. So even tho you are making a reasonable interpretation of the results, most coefficients seem t obe zero. So there is nothing to interpret!
            Perhaps you copy pasted the wrong results?
            F
            Hi FernandoRios , yes.. the coefficients are really small. I increased the decimal as follows:
            Coefficient Std. err. z P>z [95% conf. interval]
            Pre_avg -0.000110 0.000068 -1.6200 0.1050 -0.0002 0.0000
            Post_avg -0.002239 0.001708 -1.3100 0.1900 -0.0056 0.0011
            Tm25 0.000021 0.000020 1.0500 0.2920 0.0000 0.0001
            Tm24 -0.000008 0.000015 -0.5500 0.5800 0.0000 0.0000
            Tm23 -0.000032 0.000044 -0.7100 0.4760 -0.0001 0.0001
            Tm22 0.000042 0.000041 1.0100 0.3130 0.0000 0.0001
            Tm21 -0.000066 0.000067 -0.9900 0.3230 -0.0002 0.0001
            Tm20 0.000033 0.000068 0.4800 0.6290 -0.0001 0.0002
            Tm19 -0.000036 0.000050 -0.7200 0.4710 -0.0001 0.0001
            Tm18 0.000005 0.000064 0.0700 0.9430 -0.0001 0.0001
            Tm17 -0.000122 0.000081 -1.5000 0.1340 -0.0003 0.0000
            Tm16 0.000059 0.000100 0.5900 0.5570 -0.0001 0.0003
            Tm15 0.000068 0.000079 0.8600 0.3900 -0.0001 0.0002
            Tm14 -0.000085 0.000082 -1.0400 0.2970 -0.0002 0.0001
            Tm13 -0.000151 0.000087 -1.7300 0.0840 -0.0003 0.0000
            Tm12 -0.000165 0.000166 -0.9900 0.3200 -0.0005 0.0002
            Tm11 0.000157 0.000136 1.1600 0.2480 -0.0001 0.0004
            Tm10 -0.000078 0.000137 -0.5700 0.5690 -0.0003 0.0002
            Tm9 -0.000706 0.000602 -1.1700 0.2410 -0.0019 0.0005
            Tm8 0.000448 0.000427 1.0500 0.2940 -0.0004 0.0013
            Tm7 -0.000318 0.000221 -1.4400 0.1510 -0.0008 0.0001
            Tm6 0.000205 0.000146 1.4000 0.1600 -0.0001 0.0005
            Tm5 0.000097 0.000166 0.5900 0.5580 -0.0002 0.0004
            Tm4 -0.001126 0.000643 -1.7500 0.0800 -0.0024 0.0001
            Tm3 -0.000012 0.000466 -0.0300 0.9790 -0.0009 0.0009
            Tm2 0.000074 0.000405 0.1800 0.8560 -0.0007 0.0009
            Tm1 -0.001040 0.000588 -1.7700 0.0770 -0.0022 0.0001
            Tp0 -0.000464 0.001162 -0.4000 0.6900 -0.0027 0.0018
            Tp1 -0.001430 0.001402 -1.0200 0.3080 -0.0042 0.0013
            Tp2 -0.000400 0.000592 -0.6800 0.5000 -0.0016 0.0008
            Tp3 -0.000861 0.000807 -1.0700 0.2860 -0.0024 0.0007
            Tp4 -0.001600 0.001249 -1.2800 0.2000 -0.0040 0.0008
            Tp5 -0.001566 0.001517 -1.0300 0.3020 -0.0045 0.0014
            Tp6 -0.003787 0.002764 -1.3700 0.1710 -0.0092 0.0016
            Tp7 -0.004620 0.003478 -1.3300 0.1840 -0.0114 0.0022
            Tp8 -0.002031 0.002099 -0.9700 0.3330 -0.0061 0.0021
            Tp9 -0.003506 0.002130 -1.6500 0.1000 -0.0077 0.0007
            Tp10 -0.004369 0.002822 -1.5500 0.1220 -0.0099 0.0012
            Best, Rattiya

            Comment


            • In that case, My original comment Stands
              But what is more important. It seems your treatment has no impact on the outcome. Of if any, is too small.

              Comment


              • Originally posted by FernandoRios View Post
                In that case, My original comment Stands
                But what is more important. It seems your treatment has no impact on the outcome. Of if any, is too small.
                Thank you very much.. I totally agree..
                Rattiya

                Comment


                • Hello FernandoRios!

                  Please, I have a question regarding the propensity score matching and the use of CSDID command.

                  1) Is the matching being done "behind the scenes" when I simply run CSDID with X covariates OR do I have to do it beforehand and then run CSDID taking covariates into consideration?

                  2) In the last case, how can I do that if I have panel data?


                  I am sorry if these doubts are too basic.

                  Best Regards.
                  Bruno.

                  Comment


                  • Hi Bruno
                    No need. if you use Method(dripw) or method(drimp), csdid automatically runs all the relevant logits or IPTs to estimate the Pscores for each ATTGT.
                    So there is no need for you to do something else.
                    F

                    Comment


                    • Originally posted by FernandoRios View Post
                      Hi Bruno
                      No need. if you use Method(dripw) or method(drimp), csdid automatically runs all the relevant logits or IPTs to estimate the Pscores for each ATTGT.
                      So there is no need for you to do something else.
                      F
                      Great!
                      Thanks a lot.
                      Bruno.

                      Comment


                      • Dear FernandoRios , Please I have some questions on understanding the results after running the csdid. My apologize in advance if these questions are too basic.

                        1. The result of pretend test is shown below. Do I understand correctly that the result indicates that the pararell trend is held?

                        Pretrend Test. H0 All Pre-treatment are equal to 0
                        chi2(116) = 122.1841
                        p-value = 0.3290

                        2. In my anaylysis, I have 5 cohorts indicates the first year of being treated. The results is as follow: How do I interpret "GAverage coefficient"?

                        Average Treatment Effect on Treated
                        Coefficient Std. err. z P>z [95% conf. interval]

                        ATT -.0020791 .001009 -2.06 0.039 -.0040567 -.0001015



                        Coefficient Std. err. z P>z [95% conf. interval]

                        GAverage -.0013213 .0008718 -1.52 0.130 -.0030301 .0003874
                        G2005 -.0031371 .0011438 -2.74 0.006 -.0053789 -.0008952
                        G2008 -.0039495 .0015517 -2.55 0.011 -.0069907 -.0009082
                        G2011 -.0029748 .0016319 -1.82 0.068 -.0061734 .0002237
                        G2012 -.0043824 .0016268 -2.69 0.007 -.0075708 -.001194
                        G2015 .0037665 .0027934 1.35 0.178 -.0017085 .0092415
                        G2017 -.000036 .001475 -0.02 0.981 -.002927 .002855


                        3. I also like to report the number of observations by cohorts. However, the number of control groups are not the same in one cohort. For example, the no. of control group drop from 596 to 586 , and then later to 546. How can we explain this situation?

                        e(gtt)[180,7]
                        r31 2008 1991 1992 0 642 626 16
                        r32 2008 1992 1993 0 642 626 16
                        r33 2008 1993 1994 0 642 626 16
                        r34 2008 1994 1995 0 642 626 16
                        r35 2008 1995 1996 0 642 626 16
                        r36 2008 1996 1997 0 642 626 16
                        r37 2008 1997 1998 0 642 626 16
                        r38 2008 1998 1999 0 642 626 16
                        r39 2008 1999 2000 0 642 626 16
                        r40 2008 2000 2001 0 642 626 16
                        r41 2008 2001 2002 0 642 626 16
                        r42 2008 2002 2003 0 642 626 16
                        r43 2008 2003 2004 0 642 626 16
                        r44 2008 2004 2005 0 642 626 16
                        r45 2008 2005 2006 0 642 626 16
                        r46 2008 2006 2007 0 642 626 16
                        r47 2008 2007 2008 0 642 626 16
                        r48 2008 2007 2009 0 642 626 16
                        r49 2008 2007 2010 0 642 626 16
                        r50 2008 2007 2011 0 612 596 16
                        r51 2008 2007 2012 0 602 586 16
                        r52 2008 2007 2013 0 602 586 16
                        r53 2008 2007 2014 0 602 586 16
                        r54 2008 2007 2015 0 584 568 16
                        r55 2008 2007 2016 0 584 568 16
                        r56 2008 2007 2017 0 546 530 16
                        r57 2008 2007 2018 0 546 530 16
                        r58 2008 2007 2019 0 546 530 16
                        r59 2008 2007 2020 0 546 530 16
                        r60 2008 2007 2021 0 546 530 16


                        Thank you very much. Kind regards,
                        Rattiya





                        Last edited by Rattiya Lippe; 21 Dec 2022, 06:47.

                        Comment


                        • HI there,
                          1) the pretrend test is just a joint test that all "pre-treatment" effects are zero. In your case, you cannot reject the hypothesis
                          2) GAverage is, as the name suggest, the average ATT across all cohorts, weighted by their total size.
                          3) You cannot identify the exact number of observations by cohort, unless you have a perfect balance panel. and are using never treated as control.
                          Remember that each ATTGT (the results from the LOOONG table) is estimated separately, so it has its own sample. Those samples cannot be added up.
                          F

                          Comment


                          • Dear Fernando,

                            Thank you very much for making these commands available!

                            I have a quick question. The help page of csdid says

                            Estimation Method

                            csdid is a generalization of drdid, and as such it allows for various estimators. It estimates every feasible 2x2 DiD design available in the selected sample.

                            In all cases, the earliest-period covariates are used for the estimation of the propensity score and outcome regressions. This is the base period for all post treatment ATTGTs and T for all pre-treatment ATTGTs.

                            To specify a particular syntax, one should use the option method(method) using one of the following key words:

                            It says the base period for all pre-treatment ATT is T rather than T-1. Did you actually mean T-1? Glancing at the ado file of drdid, I guess T-1 covariates are used for both outcome and propensity score models (line 1019 of drdid.ado, as follows), but I just wanted to make it sure.

                            Code:
                                        ** _delta
                                        bysort `touse' `ivar' (`tmt'):gen double `__dy__'=`y'[2]-`y'[1] if `touse'
                                        ** Reg for outcome 
                             
                                        `isily' reg `__dy__' `xvar' if `touse' & `trt'==0  & `tmt'==0 [iw = `weight']
                            (y[2] - y[1] is the outcome, so I am guessing that `xvar' is in T-1 period)

                            I would very much appreciate your response.
                            Kindest,
                            Hideto
                            Last edited by Hideto Koizumi; 11 Jan 2023, 23:37.

                            Comment


                            • Good catch
                              i will update the help file.
                              so it uses t and t-1 for all attgts as default when t<g
                              but uses t-1 g-1 when using the long option when t<g

                              Comment


                              • Awesome, thank you for your prompt response Fernando!
                                Last edited by Hideto Koizumi; 13 Jan 2023, 22:54.

                                Comment

                                Working...
                                X