Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Problems with Multivariate multiple regression

    Hi all,

    I performed a multivariate multiple regression in Stata 16.1 with three dependent variables.
    However, I can't find how to display the adjusted R-squared and I think it is important to report in my master thesis.
    Is there a command to also display the adjusted r-squared when conducting a multivariate multiple regression?

    Furthermore, I can't find how to test for multicollinearity and heteroscedascity, with multiple regression one uses estate vif and vce(robust) but what are the commands to do this with a multivariate multiple regression?

    Thanks in advance!



  • #2
    what command did you use? please read the FAQ and post what you did and what was returned following the FAQ advice;

    Comment


    • #3
      Qi:
      I do share Rich's wise recommendations on posting in the most effective and efficient way.
      That said, given the following toy-example, I think you can easily calculate the Adj-Rsq going back to -regress- repeated for each dependent variables in the left-hand side of the regression equation:
      Code:
      . use https://www.stata-press.com/data/r16/auto
      (1978 Automobile Data)
      
      . mvreg headroom trunk turn = price mpg displ gear_ratio length weight
      
      Equation             Obs   Parms        RMSE    "R-sq"          F        P
      --------------------------------------------------------------------------
      headroom              74       7    .7390205    0.2996   4.777213   0.0004
      trunk                 74       7    3.052314    0.5326    12.7265   0.0000
      turn                  74       7    2.132377    0.7844   40.62042   0.0000
      
      ------------------------------------------------------------------------------
                   |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      headroom     |
             price |  -.0000528    .000038    -1.39   0.168    -.0001286    .0000229
               mpg |  -.0093774   .0260463    -0.36   0.720     -.061366    .0426112
      displacement |   .0031025   .0024999     1.24   0.219    -.0018873    .0080922
        gear_ratio |   .2108071   .3539588     0.60   0.553    -.4956976    .9173119
            length |    .015886    .012944     1.23   0.224    -.0099504    .0417223
            weight |  -.0000868   .0004724    -0.18   0.855    -.0010296    .0008561
             _cons |  -.4525117   2.170073    -0.21   0.835    -4.783995    3.878972
      -------------+----------------------------------------------------------------
      trunk        |
             price |   .0000445   .0001567     0.28   0.778    -.0002684    .0003573
               mpg |  -.0220919   .1075767    -0.21   0.838    -.2368159    .1926322
      displacement |   .0032118   .0103251     0.31   0.757    -.0173971    .0238207
        gear_ratio |  -.2271321   1.461926    -0.16   0.877    -3.145149    2.690885
            length |    .170811   .0534615     3.20   0.002     .0641014    .2775206
            weight |  -.0015944    .001951    -0.82   0.417    -.0054885    .0022997
             _cons |  -13.28253   8.962868    -1.48   0.143    -31.17249    4.607429
      -------------+----------------------------------------------------------------
      turn         |
             price |  -.0002647   .0001095    -2.42   0.018    -.0004833   -.0000462
               mpg |  -.0492948   .0751542    -0.66   0.514    -.1993031    .1007136
      displacement |   .0036977   .0072132     0.51   0.610    -.0106999    .0180953
        gear_ratio |  -.1048432   1.021316    -0.10   0.919    -2.143399    1.933712
            length |    .072128   .0373487     1.93   0.058    -.0024204    .1466764
            weight |   .0027059    .001363     1.99   0.051    -.0000145    .0054264
             _cons |   20.19157   6.261549     3.22   0.002     7.693467    32.68968
      ------------------------------------------------------------------------------
      
      . reg headroom price mpg displ gear_ratio length weight
      
            Source |       SS           df       MS      Number of obs   =        74
      -------------+----------------------------------   F(6, 67)        =      4.78
             Model |  15.6544852         6  2.60908087   Prob > F        =    0.0004
          Residual |  36.5921364        67  .546151289   R-squared       =    0.2996
      -------------+----------------------------------   Adj R-squared   =    0.2369
             Total |  52.2466216        73  .715707146   Root MSE        =    .73902
      
      ------------------------------------------------------------------------------
          headroom |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
             price |  -.0000528    .000038    -1.39   0.168    -.0001286    .0000229
               mpg |  -.0093774   .0260463    -0.36   0.720     -.061366    .0426112
      displacement |   .0031025   .0024999     1.24   0.219    -.0018873    .0080922
        gear_ratio |   .2108071   .3539588     0.60   0.553    -.4956976    .9173119
            length |    .015886    .012944     1.23   0.224    -.0099504    .0417223
            weight |  -.0000868   .0004724    -0.18   0.855    -.0010296    .0008561
             _cons |  -.4525117   2.170073    -0.21   0.835    -4.783995    3.878972
      ------------------------------------------------------------------------------
      
      . di e(r2_a)
      .23690675
      
      .
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #4
        Thanks for the reply!

        I used the following commands:

        1. manova Postcrisisrep_overall PostAng_overall PostCPI_overall = i.CompManupDummy##c.centered_Priorreputation_overa ll c.centered_CrisisResponsibility c.centered_CrisisInvolvement__ c.centered_Employment c.centered_Age
        2. mvreg

        If I use mvreg, vce(robust) Stata says: option vce() not allowed.
        Also, when I want to use estat vif after using mvreg, Stata says: estat vif not valid


        DV's = Postcrisisrep_overall PostAng_overall PostCPI_overal
        IV = CompManupDummy
        Controls = c.centered_CrisisResponsibility c.centered_CrisisInvolvement__ c.centered_Employment c.centered_Age
        Moderator = centered_Priorreputation_overall

        Comment


        • #5
          Thanks Carlo!
          So if I understand correctly, I am allowed to use the adjusted R-squared that you get when running each dependent variable in a separate regression because this is the same when you run all all three dependent variables in one regression (mvreg)?

          Furthermore, I read that one advantage of using the mvreg command is that tests of coefficients (IVs) across the DVs may be run. However, I barely have any significant values in my regression table, I was wondering whether It is necessary then to use the test command as the use of the test command is one of the compelling reasons for conducting a multivariate regression analysis.
          The reason why I performed a multivariate multiple regression is because I have moderately correlated dependent variables.

          Below my multivariate regression table: I runned three mvreg's regression to get model 1, 2 and 3 as I thought it would make sense to show a model(1) with only controls and the Dv's, a model(2) with controls + dv + IV and a model (3) that contains controls, DV, IV + interaction just like people often do when using a multiple regression.
          M1 M2 M3
          Post-Rep Post-Ang PostCPI Post-rep PostAng PostCPI Post-rep PostAng PostCPI
          b/se b/se b/se b/se b/se b/se b/se b/se b/se
          Crisis responsibility -0.060 0.313* -0.073 -0.060 0.312* -0.073 -0.011 0.263 -0.036
          (0.124) (0.137) (0.087) (0.122) (0.136) (0.087) (0.122) (0.136) (0.088)
          Crisis Involvement 0.017 0.182 0.004 -0.014 0.214* -0.006 -0.021 0.223* 0.010
          (0.092) (0.102) (0.065) (0.092) (0.102) (0.066) (0.088) (0.097) (0.063)
          cGender -0.112 0.161 0.105 -0.127 0.176 0.100
          (0.187) (0.208) (0.132) (0.185) (0.206) (0.132)
          Employment 0.138 0.044 0.089 0.111 0.073 0.080 0.126 0.048 0.067
          (0.128) (0.142) (0.090) (0.128) (0.142) (0.091) (0.123) (0.137) (0.089)
          Age -0.130* 0.015 -0.010 -0.134* 0.019 -0.012 -0.121* 0.001 -0.015
          (0.055) (0.061) (0.039) (0.054) (0.060) (0.039) (0.052) (0.058) (0.037)
          Crisis strategy=1 -0.301 0.309 -0.101 -0.265 0.265 -0.087
          (0.160) (0.178) (0.114) (0.157) (0.174) (0.113)
          Prior reputation 0.343 -0.449* 0.181
          (0.180) (0.200) (0.130)
          Crisis strategy#Priorreputation -0.091 0.224 0.002
          (0.251) (0.279) (0.181)
          Constant 3.149*** 3.327*** 2.680*** 3.300*** 3.173*** 2.731*** 3.283*** 3.196*** 2.721***
          (0.079) (0.087) (0.055) (0.111) (0.124) (0.080) (0.110) (0.122) (0.079)
          R-squared 0.058 0.119 0.022 0.090 0.145 0.030 0.135 0.191 0.062
          R-squared, adjusted
          Observations 106 106 106
          * p<0.05, ** p<0.01, *** p<0.001


          Comment


          • #6
            Qi:
            yes, but a more substantive issue rests on the usefulness of Adj_R2 to be included in the -mvreg- output table (admittedly, I do not know, as I'm not a -mvreg- user); hence, check the literature in your reserch field.
            -test- on all your dependent variables may be informative.
            Kind regards,
            Carlo
            (Stata 19.0)

            Comment


            • #7
              Thank you very much, really appreciate it!!

              Comment

              Working...
              X