Hello Sebastian,
I have some additional questions about the use of xtdpdbc.
1. When I use two lagged dependent variables in one of my projects, the coefficient of the first lag is greater than 1.00. Is this a problem, as I believe it would be if I were using xtdpdgmm? If I use only one lag, the coefficient is well below 1.00. Does that suggest that I should use only the first lag? Below are the results I get, first using only one lag and then two lags.
2. As seen in the results above, the coefficient of x1 (my main variable of interest) for the current period is positive and statistically significant, but not much greater than the coefficient of the lag of x1, which is negatively signed. When I calculate the long-run effects of x1 (in the manner discussed in earlier posts), the long-run coefficient is not statistically significant. Do these results suggest that x1 has a short-run effect on y, but this effect does not increase over time (in other words, no long-run effect)?
Thanks.
I have some additional questions about the use of xtdpdbc.
1. When I use two lagged dependent variables in one of my projects, the coefficient of the first lag is greater than 1.00. Is this a problem, as I believe it would be if I were using xtdpdgmm? If I use only one lag, the coefficient is well below 1.00. Does that suggest that I should use only the first lag? Below are the results I get, first using only one lag and then two lags.
Code:
. xtdpdbc y l(0/1).(x1 x2 x3 x4 x5 x6 x7 ) if l2.y~=., fe vce(robust) lags(1) teffects Bias-corrected estimation Iteration 0: f(b) = .00080012 Iteration 1: f(b) = 4.311e-06 Iteration 2: f(b) = 6.914e-10 Iteration 3: f(b) = 2.391e-16 Group variable: ccode Number of obs = 970 Time variable: year Number of groups = 67 Obs per group: min = 5 avg = 14.47761 max = 19 (Std. err. adjusted for clustering on ccode) ------------------------------------------------------------------------------ | Robust y | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- y | L1. | .9505701 .032202 29.52 0.000 .8874553 1.013685 | x1 | --. | .0338362 .0119252 2.84 0.005 .0104632 .0572092 L1. | -.0314495 .0113423 -2.77 0.006 -.0536799 -.0092191 | x2 | --. | -.0080593 .0107437 -0.75 0.453 -.0291165 .0129979 L1. | .0077397 .0089561 0.86 0.387 -.0098139 .0252934 | x3 | --. | .0095416 .0031686 3.01 0.003 .0033314 .0157519 L1. | -.0025377 .0022687 -1.12 0.263 -.0069842 .0019088 | x4 | --. | -.0388867 .0131287 -2.96 0.003 -.0646184 -.013155 L1. | .0260135 .0127738 2.04 0.042 .0009773 .0510498 | x5 | --. | -.0077469 .0040453 -1.92 0.055 -.0156755 .0001817 L1. | .0006256 .0027068 0.23 0.817 -.0046797 .0059309 | x6 | --. | .0041924 .0150888 0.28 0.781 -.025381 .0337659 L1. | -.0073131 .0154181 -0.47 0.635 -.037532 .0229058 | x7 | --. | -.0016741 .0025556 -0.66 0.512 -.006683 .0033348 L1. | .0040669 .0030768 1.32 0.186 -.0019636 .0100973 | year | 2001 | .0000659 .0155769 0.00 0.997 -.0304642 .030596 2002 | .0261921 .016956 1.54 0.122 -.007041 .0594253 2003 | .0267463 .0191526 1.40 0.163 -.0107922 .0642848 2004 | .0032066 .0168039 0.19 0.849 -.0297284 .0361416 2005 | -.0096127 .0176495 -0.54 0.586 -.0442051 .0249797 2006 | -.0034658 .0165419 -0.21 0.834 -.0358874 .0289558 2007 | .0105695 .0185388 0.57 0.569 -.0257658 .0469048 2008 | .0033926 .0184238 0.18 0.854 -.0327174 .0395025 2009 | .0058206 .0181105 0.32 0.748 -.0296753 .0413166 2010 | .0232615 .0180021 1.29 0.196 -.0120219 .0585449 2011 | -.0081063 .0219142 -0.37 0.711 -.0510572 .0348447 2012 | -.0076749 .0186275 -0.41 0.680 -.0441842 .0288343 2013 | -.0162198 .0196031 -0.83 0.408 -.0546413 .0222016 2014 | -.0000364 .0185574 -0.00 0.998 -.0364082 .0363354 2015 | .0054735 .0213165 0.26 0.797 -.0363061 .0472531 2016 | -.0096166 .0187961 -0.51 0.609 -.0464562 .0272231 2017 | -.0080846 .0166891 -0.48 0.628 -.0407945 .0246254 2018 | .0112082 .0158973 0.71 0.481 -.0199498 .0423663 | _cons | .0335686 .0215907 1.55 0.120 -.0087484 .0758855 ------------------------------------------------------------------------------ . xtdpdbc y l(0/1).(x1 x2 x3 x4 x5 x6 x7 ) if l2.y~=., fe vce(robust) lags(2) teffects Bias-corrected estimation Iteration 0: f(b) = .00088917 Iteration 1: f(b) = 3.530e-06 Iteration 2: f(b) = 6.444e-09 Iteration 3: f(b) = 3.986e-14 Group variable: ccode Number of obs = 970 Time variable: year Number of groups = 67 Obs per group: min = 5 avg = 14.47761 max = 19 (Std. err. adjusted for clustering on ccode) ------------------------------------------------------------------------------ | Robust y | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- y | L1. | 1.079941 .0932062 11.59 0.000 .8972602 1.262622 L2. | -.1456414 .0836234 -1.74 0.082 -.3095402 .0182574 | x1 | --. | .0320216 .0110966 2.89 0.004 .0102727 .0537705 L1. | -.0286191 .0104707 -2.73 0.006 -.0491414 -.0080969 | x2 | --. | -.008389 .0107657 -0.78 0.436 -.0294894 .0127114 L1. | .0072774 .0091959 0.79 0.429 -.0107462 .0253011 | x3 | --. | .0089407 .0029207 3.06 0.002 .0032162 .0146653 L1. | -.0033645 .0024326 -1.38 0.167 -.0081322 .0014032 | x4 | --. | -.0340336 .0114255 -2.98 0.003 -.0564272 -.01164 L1. | .0218265 .0107334 2.03 0.042 .0007895 .0428635 | x5 | --. | -.0076639 .0040157 -1.91 0.056 -.0155345 .0002066 L1. | .0015686 .0024271 0.65 0.518 -.0031883 .0063255 | x6 | --. | .0032186 .0129516 0.25 0.804 -.022166 .0286032 L1. | -.0054722 .0131681 -0.42 0.678 -.0312811 .0203367 | x7 | --. | .0000721 .0023317 0.03 0.975 -.004498 .0046422 L1. | .002005 .0022469 0.89 0.372 -.0023988 .0064088 | year | 2001 | -.0019082 .0170997 -0.11 0.911 -.0354231 .0316066 2002 | .0238397 .0169462 1.41 0.159 -.0093743 .0570537 2003 | .0222379 .0199436 1.12 0.265 -.0168507 .0613266 2004 | .0014419 .0170003 0.08 0.932 -.0318781 .0347619 2005 | -.0093809 .0171457 -0.55 0.584 -.0429858 .0242239 2006 | -.0018028 .0158745 -0.11 0.910 -.0329161 .0293106 2007 | .0114593 .0180345 0.64 0.525 -.0238878 .0468063 2008 | .0022069 .0183826 0.12 0.904 -.0338223 .0382361 2009 | .0035213 .0174704 0.20 0.840 -.03072 .0377627 2010 | .022896 .0177357 1.29 0.197 -.0118653 .0576572 2011 | -.0093328 .0220228 -0.42 0.672 -.0524966 .0338311 2012 | -.0064383 .0175773 -0.37 0.714 -.0408892 .0280127 2013 | -.0144945 .0191387 -0.76 0.449 -.0520057 .0230167 2014 | .0028155 .018004 0.16 0.876 -.0324716 .0381026 2015 | .0046752 .0206528 0.23 0.821 -.0358035 .0451539 2016 | -.0102328 .0179129 -0.57 0.568 -.0453415 .0248758 2017 | -.0059206 .0167213 -0.35 0.723 -.0386939 .0268526 2018 | .0131007 .0157716 0.83 0.406 -.0178111 .0440125 | _cons | .0433748 .0208475 2.08 0.037 .0025145 .0842351 ------------------------------------------------------------------------------ .
Thanks.
Comment