Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Comparing two Coefficients

    Hello there,

    i have split my sample into two parts and ran a fe regression for both of them.

    is it possible to say that one effect ist stroger than the other? can i say that the coefficient of the governance variable in period 2 is stronger than in period 1?

    Code:
    Linear regression                               Number of obs     =      2,088
                                                    F(53, 430)        =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.7361
                                                    Root MSE          =     .09705
    
                                             (Std. Err. adjusted for 431 clusters in company_code)
    ----------------------------------------------------------------------------------------------
                                 |               Robust
             return_volatility_w |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                governance_score |  -.0248947   .0150816    -1.65   0.100    -.0545375    .0047481
                  company_size_w |  -.0404233   .0086368    -4.68   0.000    -.0573988   -.0234478
                dividend_ratio_w |  -.8944752    .187322    -4.78   0.000    -1.262656   -.5262946
          earnings_smoothing_2_w |  -.0219127   .0050407    -4.35   0.000    -.0318202   -.0120053
                      leverage_w |   .0228574   .0284547     0.80   0.422    -.0330702    .0787849
    research_development_ratio_w |   .0840555    .101191     0.83   0.407    -.1148351    .2829461
                  sales_growth_w |  -.0268705   .0161192    -1.67   0.096    -.0585527    .0048118
             tangability_ratio_w |   .0415229   .0149298     2.78   0.006     .0121784    .0708674
                 turnover_rate_w |   .0268959   .0016942    15.88   0.000      .023566    .0302258
                     blockholder |   .0008572   .0022735     0.38   0.706    -.0036114    .0053257
            trade_union_coverage |  -.0000485   .0004925    -0.10   0.922    -.0010165    .0009196
                      bank_power |    .387277   .0397159     9.75   0.000     .3092155    .4653385
                                 |
                           sic_2 |
                             13  |  -.0304118   .0150801    -2.02   0.044    -.0600516    -.000772
                             20  |  -.1392726   .0161967    -8.60   0.000    -.1711072    -.107438
                             21  |  -.1314665   .0323268    -4.07   0.000    -.1950048   -.0679282
                             22  |  -.1170602   .0116354   -10.06   0.000    -.1399296   -.0941908
                             23  |  -.0864256   .0288507    -3.00   0.003    -.1431315   -.0297196
                             24  |  -.0144642   .0172295    -0.84   0.402    -.0483288    .0194003
                             25  |  -.0491051    .014703    -3.34   0.001    -.0780037   -.0202065
                             26  |  -.0932712   .0265203    -3.52   0.000    -.1453966   -.0411457
                             27  |  -.1102874   .0213453    -5.17   0.000    -.1522415   -.0683332
                             28  |  -.1001355   .0143351    -6.99   0.000    -.1283111     -.07196
                             29  |  -.0705352   .0149799    -4.71   0.000    -.0999782   -.0410922
                             30  |  -.0265549   .0369599    -0.72   0.473    -.0991994    .0460896
                             31  |  -.0848841   .0332142    -2.56   0.011    -.1501664   -.0196017
                             32  |   .0024467   .0159965     0.15   0.879    -.0289944    .0338879
                             33  |   .0167423   .0388873     0.43   0.667    -.0596906    .0931752
                             34  |  -.0953966   .0169065    -5.64   0.000    -.1286262    -.062167
                             35  |  -.0498152   .0162776    -3.06   0.002    -.0818087   -.0178216
                             36  |  -.0549001   .0180429    -3.04   0.002    -.0903634   -.0194368
                             37  |  -.0394992   .0181193    -2.18   0.030    -.0751127   -.0038858
                             38  |  -.1142142   .0159051    -7.18   0.000    -.1454755   -.0829528
                             39  |  -.0832297   .0223976    -3.72   0.000    -.1272521   -.0392072
                             50  |  -.1162061    .024314    -4.78   0.000    -.1639952   -.0684169
                             51  |  -.0762255   .0210122    -3.63   0.000     -.117525   -.0349261
                             52  |   -.090609   .0116039    -7.81   0.000    -.1134164   -.0678016
                             53  |  -.1292317   .0149522    -8.64   0.000    -.1586202   -.0998431
                             54  |  -.1221297   .0142309    -8.58   0.000    -.1501005   -.0941589
                             55  |  -.1201868   .0281467    -4.27   0.000     -.175509   -.0648646
                             56  |  -.0906343   .0237194    -3.82   0.000    -.1372546   -.0440139
                             57  |  -.1217428   .0272069    -4.47   0.000    -.1752178   -.0682678
                             58  |  -.1360863   .0194496    -7.00   0.000    -.1743144   -.0978583
                             59  |  -.0626834   .0200505    -3.13   0.002    -.1020925   -.0232742
                             70  |   .0141774   .0388447     0.36   0.715    -.0621716    .0905265
                             72  |  -.0498467   .0193437    -2.58   0.010    -.0878666   -.0118268
                             73  |  -.0595291   .0167802    -3.55   0.000    -.0925105   -.0265477
                             75  |  -.0240225   .0618428    -0.39   0.698    -.1455743    .0975293
                             78  |  -.0734657   .0236273    -3.11   0.002    -.1199051   -.0270264
                             79  |  -.0495513   .0308397    -1.61   0.109    -.1101666     .011064
                             80  |  -.1468875   .0238443    -6.16   0.000    -.1937534   -.1000217
                             82  |  -.0930031   .0181935    -5.11   0.000    -.1287624   -.0572438
                             87  |  -.0597639   .0310283    -1.93   0.055    -.1207499    .0012221
                                 |
                            year |
                           2004  |  -.1906044    .014588   -13.07   0.000     -.219277   -.1619318
                           2005  |   -.490761   .0420629   -11.67   0.000    -.5734355   -.4080864
                           2006  |  -.7040922   .0631446   -11.15   0.000    -.8282028   -.5799817
                           2007  |  -.7784349   .0708597   -10.99   0.000    -.9177093   -.6391604
                           2008  |  -.3461531   .0470228    -7.36   0.000    -.4385762   -.2537299
                           2009  |          0  (omitted)
                                 |
                           _cons |   -2.18514   .3043332    -7.18   0.000    -2.783305   -1.586974
    ----------------------------------------------------------------------------------------------
    
    . 
    end of do-file
    
    . do "C:\Users\Paddy\AppData\Local\Temp\STD307c_000000.tmp"
    
    . 
    . regress return_volatility_w governance_score company_size_w dividend_ratio_w earnings_smoothing_2_w leverage_w resear
    > ch_development_ratio_w sales_growth_w tangability_ratio_w turnover_rate_w blockholder trade_union_coverage bank_power
    >  i.sic_2 i.year if year > 2010, vce (cluster company_code)
    note: 2019.year omitted because of collinearity
    
    Linear regression                               Number of obs     =      3,134
                                                    F(54, 420)        =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.6752
                                                    Root MSE          =     .06619
    
                                             (Std. Err. adjusted for 421 clusters in company_code)
    ----------------------------------------------------------------------------------------------
                                 |               Robust
             return_volatility_w |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                governance_score |  -.0195744   .0086024    -2.28   0.023    -.0364835   -.0026654
                  company_size_w |  -.0251767   .0046063    -5.47   0.000    -.0342309   -.0161225
                dividend_ratio_w |  -.6324831   .0940964    -6.72   0.000    -.8174417   -.4475244
          earnings_smoothing_2_w |  -.0057561    .002902    -1.98   0.048    -.0114604   -.0000518
                      leverage_w |   .0344702   .0170789     2.02   0.044     .0008995    .0680409
    research_development_ratio_w |   .2468165   .0671307     3.68   0.000     .1148625    .3787705
                  sales_growth_w |   .0341093   .0120846     2.82   0.005     .0103555    .0578631
             tangability_ratio_w |   .0181575   .0102887     1.76   0.078    -.0020663    .0383813
                 turnover_rate_w |   .0263781   .0017497    15.08   0.000     .0229387    .0298174
                     blockholder |   .0054793   .0015189     3.61   0.000     .0024937    .0084649
            trade_union_coverage |  -.0000215   .0003034    -0.07   0.944    -.0006179    .0005749
                      bank_power |  -.0966771   .0245319    -3.94   0.000    -.1448976   -.0484566
                                 |
                           sic_2 |
                             21  |   .0304405   .0172305     1.77   0.078    -.0034283    .0643093
                             22  |  -.0055592   .0282167    -0.20   0.844    -.0610228    .0499044
                             23  |   .0420466   .0417709     1.01   0.315    -.0400596    .1241527
                             24  |   .0224067   .0157591     1.42   0.156    -.0085697    .0533832
                             25  |    .050406   .0108798     4.63   0.000     .0290203    .0717917
                             26  |   -.006852   .0167531    -0.41   0.683    -.0397824    .0260785
                             27  |   .0284892   .0194864     1.46   0.144    -.0098139    .0667923
                             28  |   .0263143   .0120419     2.19   0.029     .0026444    .0499843
                             29  |   .0581011   .0141749     4.10   0.000     .0302385    .0859637
                             30  |   .0381382   .0160436     2.38   0.018     .0066023     .069674
                             31  |   .0727234    .013591     5.35   0.000     .0460085    .0994383
                             32  |   .0307623    .009945     3.09   0.002     .0112141    .0503105
                             33  |   .0098386   .0422816     0.23   0.816    -.0732713    .0929486
                             34  |   .0013414   .0119072     0.11   0.910    -.0220638    .0247465
                             35  |    .038221   .0130557     2.93   0.004     .0125583    .0638836
                             36  |   .0334714    .015186     2.20   0.028     .0036215    .0633213
                             37  |   .0242125   .0139162     1.74   0.083    -.0031415    .0515666
                             38  |  -.0049464   .0118221    -0.42   0.676    -.0281842    .0182913
                             39  |   .0342769   .0152831     2.24   0.025      .004236    .0643178
                             50  |   .0017851   .0166087     0.11   0.914    -.0308614    .0344315
                             51  |   .0551732   .0232763     2.37   0.018     .0094206    .1009257
                             52  |   .0083861   .0131168     0.64   0.523    -.0173966    .0341689
                             53  |  -.0032044    .013684    -0.23   0.815    -.0301021    .0236933
                             54  |   .0099408    .018664     0.53   0.595    -.0267457    .0466273
                             55  |  -.0136201   .0189074    -0.72   0.472     -.050785    .0235449
                             56  |   .0292476   .0178389     1.64   0.102    -.0058171    .0643122
                             57  |   .0104898   .0372296     0.28   0.778    -.0626898    .0836695
                             58  |  -.0067515   .0190734    -0.35   0.724    -.0442427    .0307396
                             59  |   .0356023   .0134419     2.65   0.008     .0091806    .0620239
                             70  |   .0100439   .0273551     0.37   0.714     -.043726    .0638138
                             72  |   .0390487   .0122056     3.20   0.001     .0150571    .0630404
                             73  |   .0164809   .0127765     1.29   0.198    -.0086329    .0415946
                             75  |   .0205875   .0281016     0.73   0.464    -.0346498    .0758248
                             78  |   .0251894   .0122396     2.06   0.040     .0011308    .0492479
                             79  |   .0247439   .0196943     1.26   0.210    -.0139678    .0634556
                             80  |  -.0274531   .0145026    -1.89   0.059    -.0559598    .0010535
                             82  |   .0988074   .0148506     6.65   0.000     .0696166    .1279981
                             87  |   .0399987   .0188036     2.13   0.034     .0030378    .0769596
                                 |
                            year |
                           2012  |  -.0734135   .0070246   -10.45   0.000    -.0872213   -.0596057
                           2013  |  -.0924838   .0093868    -9.85   0.000    -.1109348   -.0740328
                           2014  |  -.1007837   .0090648   -11.12   0.000    -.1186018   -.0829656
                           2015  |  -.0743972    .009796    -7.59   0.000    -.0936525   -.0551419
                           2016  |  -.0636849   .0125124    -5.09   0.000    -.0882797   -.0390901
                           2017  |  -.1162378   .0117682    -9.88   0.000    -.1393696    -.093106
                           2018  |  -.0432795   .0077273    -5.60   0.000    -.0584686   -.0280904
                           2019  |          0  (omitted)
                                 |
                           _cons |   1.017701   .1710983     5.95   0.000      .681385    1.354016
    ----------------------------------------------------------------------------------------------

  • #2
    One option is to compare the confidence intervals and see if they overlap. If so, the effect is similar. However, in your setup it is probably much better to work with interaction effects. Generate a binary variable that identifies both groups and then run:

    Code:
    reg depvar (var1 var2 var3)##i.groupvar, options
    The interaction term of governance and the grouping will tell you exactly the difference of the coefs and make it easy to assess the statistical significance.
    Best wishes

    (Stata 16.1 MP)

    Comment


    • #3
      Looking at overlapping confidence intervals is problematic. If two 95% CIs overlap, that does NOT mean that the coefficients do not significantly differ at the .05 level. With overlapping CIs, you are looking at whether a high possible value on one coefficient overlaps with a low possible value on another. In other words, to overlap, two unlikely events may have to occur, not just one.

      I agree that looking at interaction effects is a better way to go.

      You don't necessarily have to interact every variable with group membership. For example, your theory may say that the effect of education may differ by gender, but predict no such differences for other variables.
      -------------------------------------------
      Richard Williams, Notre Dame Dept of Sociology
      StataNow Version: 18.5 MP (2 processor)

      EMAIL: [email protected]
      WWW: https://www3.nd.edu/~rwilliam

      Comment


      • #4
        Here is a short article on the issue of overlapping CIs, should anyone need a published article to convince a skeptical boss or supervisor that two independent point estimates can differ significantly, even though their CIs overlap.
        --
        Bruce Weaver
        Email: [email protected]
        Version: Stata/MP 18.5 (Windows)

        Comment


        • #5
          Both Richard and Bruce are right, thanks for pointing this out, looking at the CIs is problematic and can easily lead to wrong conclusions. I think the only thing that is always valid is that no overlap means a robust significant difference for the given level. Another interesting source for this is https://academic.oup.com/jinsectscie...3/1/34/2577125. But note that this is then a very conservative estimation and the interaction approach is clearly better.
          Best wishes

          (Stata 16.1 MP)

          Comment

          Working...
          X