Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpretation Kleibergen-Paap, Cragg-Donald and Stock-Yogo weak ID

    Dear users,

    for my thesis I'm working with an IV regression, where I try to see what effect stock option compensation has on innovation of the company.
    As an instrument for stock option compensation I use the predicted first year of the cycle. Which I've done below.



    ivreghdfe xrd_w (option_value=predictedfirstyear) if hitech==1, a(fyear sic) cluster(gvkey)
    (MWFE estimator converged in 4 iterations)

    IV (2SLS) estimation
    --------------------

    Estimates efficient for homoskedasticity only
    Statistics robust to heteroskedasticity and clustering on gvkey

    Number of clusters (gvkey) = 343 Number of obs = 17037
    F( 1, 342) = 0.10
    Prob > F = 0.7491
    Total (centered) SS = 5.37069e+10 Centered R2 = 0.0087
    Total (uncentered) SS = 5.37069e+10 Uncentered R2 = 0.0087
    Residual SS = 5.32398e+10 Root MSE = 1769

    ------------------------------------------------------------------------------
    | Robust
    xrd_w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    option_value | .0297179 .0928436 0.32 0.749 -.1528984 .2123342
    ------------------------------------------------------------------------------
    Underidentification test (Kleibergen-Paap rk LM statistic): 2.060
    Chi-sq(1) P-val = 0.1512
    ------------------------------------------------------------------------------
    Weak identification test (Cragg-Donald Wald F statistic): 238.727
    (Kleibergen-Paap rk Wald F statistic): 2.191
    Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38
    15% maximal IV size 8.96
    20% maximal IV size 6.66
    25% maximal IV size 5.53
    Source: Stock-Yogo (2005). Reproduced by permission.
    NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
    ------------------------------------------------------------------------------
    Hansen J statistic (overidentification test of all instruments): 0.000
    (equation exactly identified)
    ------------------------------------------------------------------------------




    However, now my question is that for my first stage I have found:



    //first stage: instrument regressions
    . reghdfe option_value predictedfirstyear, cl(gvkey) a(fyear)
    (MWFE estimator converged in 1 iterations)

    HDFE Linear regression Number of obs = 141,526
    Absorbing 1 HDFE group F( 1, 2585) = 23.06
    Statistics robust to heteroskedasticity Prob > F = 0.0000
    R-squared = 0.0006
    Adj R-squared = 0.0004
    Within R-sq. = 0.0004
    Number of clusters (gvkey) = 2,586 Root MSE = 6317.1100

    (Std. Err. adjusted for 2,586 clusters in gvkey)
    ------------------------------------------------------------------------------------
    | Robust
    option_value | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    -------------------+----------------------------------------------------------------
    predictedfirstyear | 424.6596 88.43824 4.80 0.000 251.2426 598.0766
    _cons | 421.2141 24.09054 17.48 0.000 373.9754 468.4528
    ------------------------------------------------------------------------------------


    With an F-statistic of 23.06 I thought I could reject that my instrument is weak with Staiger and Stock's rule of thumb with F>10.
    However, I now have trouble with interpreting the Kleibergen-Paap, Cragg-Donald and Stock-Yogo results in the second stage.
    My questions are:
    1. For the Kleibergen-Paap rk LM statistic is it true that when you are looking at underidentification you're testing if the instrument is irrelevant and therefore in this case with a p-value of 0.1512 I'm rejecting that the instrument is irrelevant?
    2. For the Cragg-Donald Wald F-stat identification test, is it true that I'm again looking at whether the instrument is weak, the same way I did in the first stage regression and with an F-stat of 238.727 can reject that the instrument is weak?
    3. How does the Kleibergen-Paap rk Wald F statistic differ from the Cragg-Donald Wald F statistic?
    4. Is it true that SY’s tests can be used with multiple endogenous regressors and multiple instruments and therefore should not be used in this case, where I have only 1 instrument.

    I would greatly appreciate all help I can get.





  • #2
    I also have another question, where I want to use revt ROA and emp as control variables and the predicted first year as the instrument.
    However, at the bottom it states: included instruments revt ROA emp and excluded instrument: predicted first year.
    What am I doing wrong?

    . ivreghdfe xrd_w (option_value=predictedfirstyear) revt ROA emp if hitech==1, a(fyear sic) cluster(gvkey)
    (MWFE estimator converged in 4 iterations)

    IV (2SLS) estimation
    --------------------

    Estimates efficient for homoskedasticity only
    Statistics robust to heteroskedasticity and clustering on gvkey

    Number of clusters (gvkey) = 343 Number of obs = 16953
    F( 4, 342) = 12.19
    Prob > F = 0.0000
    Total (centered) SS = 5.36576e+10 Centered R2 = 0.5449
    Total (uncentered) SS = 5.36576e+10 Uncentered R2 = 0.5449
    Residual SS = 2.44214e+10 Root MSE = 1201

    ------------------------------------------------------------------------------
    | Robust
    xrd_w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    option_value | .1435217 .0696 2.06 0.040 .0066237 .2804197
    revt | .086323 .0279078 3.09 0.002 .0314305 .1412155
    ROA | 303.733 135.2008 2.25 0.025 37.80316 569.6629
    emp | -6.473182 8.158876 -0.79 0.428 -22.52108 9.574713
    ------------------------------------------------------------------------------
    Underidentification test (Kleibergen-Paap rk LM statistic): 2.165
    Chi-sq(1) P-val = 0.1412
    ------------------------------------------------------------------------------
    Weak identification test (Cragg-Donald Wald F statistic): 234.540
    (Kleibergen-Paap rk Wald F statistic): 2.302
    Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38
    15% maximal IV size 8.96
    20% maximal IV size 6.66
    25% maximal IV size 5.53
    Source: Stock-Yogo (2005). Reproduced by permission.
    NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
    ------------------------------------------------------------------------------
    Hansen J statistic (overidentification test of all instruments): 0.000
    (equation exactly identified)
    ------------------------------------------------------------------------------
    Instrumented: option_value
    Included instruments: revt ROA emp
    Excluded instruments: predictedfirstyear
    Partialled-out: _cons
    nb: total SS, model F and R2s are after partialling-out;
    any small-sample adjustments include partialled-out
    variables in regressor count K
    ------------------------------------------------------------------------------

    Comment

    Working...
    X