Dear Statalist Community,
I am sorry if this post has an obvious solution, but it is something I am not 100% convinced about and that is why I decided to post it here. Thank you very much in advance.
I am doing a survival analysis study from a cohort of patients, looking if they have a stroke with the aim of finding risk factors. I explained this in detail in some of my previous posts. The time variable is age, to standardise for it.
One of the important factors, from its clinical relevance, is gender.
The Kaplan Meyer curve and survival function looks like the following.

From these results, it seems that males have a higher risk than females at a younger age, and this gets reversed as patients get older.

This made me think that the variable gender violets the PH assumption, hence, I should stratify for it in the Cox regression, instead of running the regression with sex as a covariable. However, if I run a stcox with sex and test for its PH assumption, I get the results that state that the PH assumption is not violated.

Given this, I thought about using sex as a covariable...but every day that goes by makes me feel a bit more insecure about that decision.
I would be really grateful if you could advise me on this issue.
Thank you very much.
David.
I am sorry if this post has an obvious solution, but it is something I am not 100% convinced about and that is why I decided to post it here. Thank you very much in advance.
I am doing a survival analysis study from a cohort of patients, looking if they have a stroke with the aim of finding risk factors. I explained this in detail in some of my previous posts. The time variable is age, to standardise for it.
One of the important factors, from its clinical relevance, is gender.
The Kaplan Meyer curve and survival function looks like the following.
Code:
sts list, by(sex) failure _d: stroketotallong_ == 1 analysis time _t: meanageass_ enter on or after: time==. exit on or before: stroketotallong_==2 id: id At Net Survivor Std. Time Risk Fail Lost Function Error [95% Conf. Int.] ------------------------------------------------------------------------ Male 17 0 0 -2 1.0000 . . . 18 2 0 -2 1.0000 . . . 19 4 0 -3 1.0000 . . . 20 7 0 -4 1.0000 . . . 21 11 0 -4 1.0000 . . . 22 15 0 -1 1.0000 . . . 23 16 0 2 1.0000 . . . 24 14 0 -1 1.0000 . . . 25 15 0 -2 1.0000 . . . 26 17 1 4 0.9412 0.0571 0.6502 0.9915 27 12 0 2 0.9412 0.0571 0.6502 0.9915 29 10 0 1 0.9412 0.0571 0.6502 0.9915 30 9 0 -1 0.9412 0.0571 0.6502 0.9915 31 10 0 1 0.9412 0.0571 0.6502 0.9915 32 9 0 -1 0.9412 0.0571 0.6502 0.9915 33 10 0 -2 0.9412 0.0571 0.6502 0.9915 34 12 0 3 0.9412 0.0571 0.6502 0.9915 35 9 0 -4 0.9412 0.0571 0.6502 0.9915 36 13 2 -6 0.7964 0.1058 0.4893 0.9300 37 17 0 1 0.7964 0.1058 0.4893 0.9300 38 16 1 0 0.7466 0.1103 0.4551 0.8972 39 15 0 1 0.7466 0.1103 0.4551 0.8972 40 14 0 1 0.7466 0.1103 0.4551 0.8972 41 13 2 1 0.6317 0.1196 0.3570 0.8148 42 10 1 -5 0.5686 0.1232 0.3019 0.7663 43 14 2 -3 0.4873 0.1182 0.2484 0.6901 45 15 1 0 0.4549 0.1147 0.2287 0.6566 46 14 1 -4 0.4224 0.1110 0.2087 0.6225 47 17 1 -2 0.3975 0.1072 0.1947 0.5945 48 18 0 3 0.3975 0.1072 0.1947 0.5945 49 15 1 -5 0.3710 0.1033 0.1792 0.5645 50 19 2 -4 0.3320 0.0961 0.1581 0.5172 51 21 1 1 0.3162 0.0928 0.1500 0.4972 52 19 1 3 0.2995 0.0894 0.1411 0.4761 53 15 2 -1 0.2596 0.0818 0.1186 0.4261 54 14 0 -1 0.2596 0.0818 0.1186 0.4261 55 15 0 1 0.2596 0.0818 0.1186 0.4261 57 14 0 -2 0.2596 0.0818 0.1186 0.4261 58 16 1 -3 0.2434 0.0783 0.1100 0.4047 59 18 2 -1 0.2163 0.0719 0.0961 0.3677 60 17 0 2 0.2163 0.0719 0.0961 0.3677 61 15 1 -7 0.2019 0.0685 0.0885 0.3479 62 21 0 1 0.2019 0.0685 0.0885 0.3479 63 20 2 0 0.1817 0.0631 0.0787 0.3186 64 18 1 0 0.1716 0.0604 0.0737 0.3038 65 17 0 -2 0.1716 0.0604 0.0737 0.3038 66 19 0 5 0.1716 0.0604 0.0737 0.3038 68 14 1 0 0.1594 0.0573 0.0674 0.2862 69 13 1 2 0.1471 0.0542 0.0612 0.2685 70 10 0 2 0.1471 0.0542 0.0612 0.2685 72 8 1 1 0.1287 0.0505 0.0507 0.2443 73 6 0 -1 0.1287 0.0505 0.0507 0.2443 74 7 0 2 0.1287 0.0505 0.0507 0.2443 75 5 0 -2 0.1287 0.0505 0.0507 0.2443 76 7 2 -2 0.0919 0.0422 0.0308 0.1946 77 7 2 0 0.0657 0.0340 0.0192 0.1532 78 5 1 3 0.0525 0.0296 0.0137 0.1320 79 1 0 1 0.0525 0.0296 0.0137 0.1320 81 0 0 -1 0.0525 0.0296 0.0137 0.1320 87 1 0 1 0.0525 0.0296 0.0137 0.1320 Female 17 3 0 -8 1.0000 . . . 18 11 0 -5 1.0000 . . . 19 16 0 -2 1.0000 . . . 21 18 0 -3 1.0000 . . . 22 21 0 -4 1.0000 . . . 23 25 0 4 1.0000 . . . 24 21 0 2 1.0000 . . . 25 19 0 -2 1.0000 . . . 26 21 0 1 1.0000 . . . 27 20 0 -5 1.0000 . . . 29 25 0 3 1.0000 . . . 30 22 0 1 1.0000 . . . 31 21 1 -2 0.9524 0.0465 0.7072 0.9932 32 22 0 -3 0.9524 0.0465 0.7072 0.9932 33 25 1 6 0.9143 0.0582 0.6975 0.9780 34 18 0 2 0.9143 0.0582 0.6975 0.9780 35 16 0 -7 0.9143 0.0582 0.6975 0.9780 36 23 0 -1 0.9143 0.0582 0.6975 0.9780 37 24 0 1 0.9143 0.0582 0.6975 0.9780 38 23 1 -5 0.8745 0.0679 0.6590 0.9578 39 27 1 2 0.8421 0.0727 0.6314 0.9378 40 24 1 -5 0.8071 0.0777 0.5965 0.9149 41 28 1 -2 0.7782 0.0801 0.5710 0.8939 42 29 1 0 0.7514 0.0817 0.5476 0.8732 43 28 0 4 0.7514 0.0817 0.5476 0.8732 44 24 0 -2 0.7514 0.0817 0.5476 0.8732 45 26 0 -1 0.7514 0.0817 0.5476 0.8732 46 27 2 -6 0.6957 0.0846 0.4968 0.8285 47 31 0 7 0.6957 0.0846 0.4968 0.8285 48 24 1 -1 0.6667 0.0859 0.4697 0.8046 50 24 0 1 0.6667 0.0859 0.4697 0.8046 51 23 0 -1 0.6667 0.0859 0.4697 0.8046 52 24 3 -9 0.5834 0.0876 0.3944 0.7319 53 30 2 -5 0.5445 0.0860 0.3638 0.6939 54 33 1 2 0.5280 0.0849 0.3513 0.6772 55 30 1 0 0.5104 0.0839 0.3376 0.6593 56 29 1 0 0.4928 0.0828 0.3240 0.6413 57 28 0 5 0.4928 0.0828 0.3240 0.6413 58 23 1 -2 0.4714 0.0820 0.3063 0.6200 59 24 2 2 0.4321 0.0797 0.2750 0.5796 61 20 1 0 0.4105 0.0786 0.2574 0.5575 62 19 1 -1 0.3889 0.0774 0.2400 0.5352 64 19 1 3 0.3684 0.0759 0.2239 0.5136 65 15 0 1 0.3684 0.0759 0.2239 0.5136 66 14 1 0 0.3421 0.0749 0.2018 0.4873 67 13 1 3 0.3158 0.0737 0.1802 0.4606 69 9 1 -3 0.2807 0.0734 0.1494 0.4279 70 11 3 -4 0.2041 0.0653 0.0946 0.3428 71 12 1 -1 0.1871 0.0621 0.0846 0.3207 72 12 0 -1 0.1871 0.0621 0.0846 0.3207 73 13 1 0 0.1727 0.0589 0.0766 0.3012 74 12 1 -1 0.1583 0.0557 0.0686 0.2816 75 12 2 -1 0.1320 0.0495 0.0544 0.2444 76 11 0 2 0.1320 0.0495 0.0544 0.2444 77 9 1 0 0.1173 0.0461 0.0464 0.2240 78 8 1 0 0.1026 0.0426 0.0386 0.2034 79 7 0 2 0.1026 0.0426 0.0386 0.2034 83 5 2 -1 0.0616 0.0340 0.0164 0.1511 84 4 0 2 0.0616 0.0340 0.0164 0.1511 86 2 0 1 0.0616 0.0340 0.0164 0.1511 87 1 0 1 0.0616 0.0340 0.0164 0.1511 ------------------------------------------------------------------------
This made me think that the variable gender violets the PH assumption, hence, I should stratify for it in the Cox regression, instead of running the regression with sex as a covariable. However, if I run a stcox with sex and test for its PH assumption, I get the results that state that the PH assumption is not violated.
Code:
stcox sex failure _d: stroketotallong_ == 1 analysis time _t: meanageass_ enter on or after: time==. exit on or before: stroketotallong_==2 id: id Iteration 0: log likelihood = -250.79081 Iteration 1: log likelihood = -250.04182 Iteration 2: log likelihood = -250.04144 Refining estimates: Iteration 0: log likelihood = -250.04144 Cox regression -- Breslow method for ties No. of subjects = 380 Number of obs = 1,849 No. of failures = 73 Time at risk = 2093 LR chi2(1) = 1.50 Log likelihood = -250.04144 Prob > chi2 = 0.2209 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | .7456718 .1779156 -1.23 0.219 .4671464 1.190262 ------------------------------------------------------------------------------ . estat phtest Test of proportional-hazards assumption Time: Time ---------------------------------------------------------------- | chi2 df Prob>chi2 ------------+--------------------------------------------------- global test | 2.45 1 0.1172 ----------------------------------------------------------------
Given this, I thought about using sex as a covariable...but every day that goes by makes me feel a bit more insecure about that decision.
I would be really grateful if you could advise me on this issue.
Thank you very much.
David.
Comment