Hi, I'm doing a research for my thesis on the impact of environmental innovation to financial performance. Since it can take years for innovation to have impact on company's financial performance, I'm using lagged variables of the environmental innovation from t-1 up until t-5. I'm using panel data.
The problem is, there is multicollinearity in my lagged variable. I'm wondering if it is alright to ignore the multicollinearity. Are there any approaches that should be taken?
Here is the result to the multicollinearity test:
Thank you!
The problem is, there is multicollinearity in my lagged variable. I'm wondering if it is alright to ignore the multicollinearity. Are there any approaches that should be taken?
Here is the result to the multicollinearity test:
Code:
. reg ROA_w ENV_w ENV_lag1 ENV_lag2 ENV_lag3 ENV_lag4 ENV_lag5 RDI_w SIZE_w Source | SS df MS Number of obs = 825 -------------+---------------------------------- F(8, 816) = 10.18 Model | 657.26792 8 82.15849 Prob > F = 0.0000 Residual | 6583.71871 816 8.06828273 R-squared = 0.0908 -------------+---------------------------------- Adj R-squared = 0.0819 Total | 7240.98662 824 8.78760513 Root MSE = 2.8405 ------------------------------------------------------------------------------ ROA_w | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ENV_w | -.0074454 .0105458 -0.71 0.480 -.0281456 .0132547 ENV_lag1 | .008536 .0137712 0.62 0.536 -.0184951 .0355672 ENV_lag2 | -.0115661 .0119388 -0.97 0.333 -.0350004 .0118682 ENV_lag3 | .0045303 .010918 0.41 0.678 -.0169003 .0259609 ENV_lag4 | .0092341 .0112023 0.82 0.410 -.0127546 .0312228 ENV_lag5 | -.0232335 .0085287 -2.72 0.007 -.0399743 -.0064927 RDI_w | 24.61587 3.864417 6.37 0.000 17.0305 32.20124 SIZE_w | -9.44e-06 2.53e-06 -3.72 0.000 -.0000144 -4.46e-06 _cons | 5.626047 .2895753 19.43 0.000 5.057647 6.194447 ------------------------------------------------------------------------------ . . . vif Variable | VIF 1/VIF -------------+---------------------- ENV_lag1 | 12.09 0.082687 ENV_lag2 | 9.55 0.104716 ENV_lag4 | 9.55 0.104716 ENV_lag3 | 8.54 0.117050 ENV_w | 6.95 0.143930 ENV_lag5 | 5.75 0.173855 SIZE_w | 1.04 0.964869 RDI_w | 1.02 0.982548 -------------+---------------------- Mean VIF | 6.81
Thank you!
Comment