Dear all
I have the following sample dataset.
For each firm, I have the operating revenue turnover for the year 2014-2017.
I also made seperate operating revenue turnover variables.
Now, I want to calculate the revenue growth for for example 2014-2015.
I actually want to do the following:
operatingrevenueturnover2015 - operatingrevenueturnover2014 / operatingrevenueturnover2014
If I do it this way, this does not work.
How can I do this?
Thanks!
I have the following sample dataset.
For each firm, I have the operating revenue turnover for the year 2014-2017.
I also made seperate operating revenue turnover variables.
Now, I want to calculate the revenue growth for for example 2014-2015.
I actually want to do the following:
operatingrevenueturnover2015 - operatingrevenueturnover2014 / operatingrevenueturnover2014
If I do it this way, this does not work.
How can I do this?
Thanks!
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float firm int year double operatingrevenueturnover float(operatingrevenueturnover2014 operatingrevenueturnover2015 operatingrevenueturnover2016 operatingrevenueturnover2017) 1 2017 750000 . . . 750000 1 2015 713500 . 713500 . . 1 2016 751700 . . 751700 . 1 2014 783781 783781 . . . 2 2016 621000 . . 621000 . 2 2015 621000 . 621000 . . 2 2014 579000 579000 . . . 2 2017 600000 . . . 600000 3 2014 84146095 84146096 . . . 3 2016 108837094 . . 108837096 . 3 2015 91007681 . 91007680 . . 3 2017 116326189 . . . 116326192 4 2017 252000 . . . 252000 4 2015 252000 . 252000 . . 4 2014 225000 225000 . . . 4 2016 252000 . . 252000 . 5 2014 454000 454000 . . . 5 2016 653000 . . 653000 . 5 2017 490000 . . . 490000 5 2015 490000 . 490000 . . 6 2014 62731632 62731632 . . . 6 2016 64443465 . . 64443464 . 6 2017 70734286 . . . 70734288 6 2015 62652350 . 62652352 . . 7 2015 7000000 . 7000000 . . 7 2014 11511100 11511100 . . . 7 2017 8000000 . . . 8000000 7 2016 7500000 . . 7500000 . 8 2014 1000000 1000000 . . . 8 2017 1450000 . . . 1450000 8 2016 1300000 . . 1300000 . 8 2015 1200000 . 1200000 . . 9 2015 2510000 . 2510000 . . 9 2016 2340000 . . 2340000 . 9 2017 2300000 . . . 2300000 9 2014 3021000 3021000 . . . 10 2017 1700000 . . . 1700000 10 2016 1751000 . . 1751000 . 10 2014 1751000 1751000 . . . 10 2015 1751000 . 1751000 . . 11 2017 120000 . . . 120000 11 2015 7000000 . 7000000 . . 11 2016 90000 . . 90000 . 11 2014 10500000 1.05e+07 . . . 12 2014 1543400 1543400 . . . 12 2017 1543500 . . . 1543500 12 2016 1736000 . . 1736000 . 12 2015 1929000 . 1929000 . . 13 2016 1152000 . . 1152000 . 13 2017 1200000 . . . 1200000 13 2015 1152000 . 1152000 . . 13 2014 1152000 1152000 . . . 14 2014 2800000 2800000 . . . 14 2016 2704900 . . 2704900 . 14 2017 3010000 . . . 3010000 14 2015 2300000 . 2300000 . . 15 2017 1800000 . . . 1800000 15 2015 1400000 . 1400000 . . 15 2014 1800000 1800000 . . . 15 2016 1500000 . . 1500000 . 16 2014 2020000 2020000 . . . 16 2017 2700000 . . . 2700000 16 2015 2020000 . 2020000 . . 16 2016 2020000 . . 2020000 . 17 2017 84000 . . . 84000 17 2015 93948 . 93948 . . 17 2014 90876 90876 . . . 17 2016 74072 . . 74072 . 18 2016 2947300 . . 2947300 . 18 2014 1528000 1528000 . . . 18 2017 3647233 . . . 3647233 18 2015 2533800 . 2533800 . . 19 2016 6444000 . . 6444000 . 19 2015 5463000 . 5463000 . . 19 2017 6444000 . . . 6444000 19 2014 6724000 6724000 . . . 20 2014 293000 293000 . . . 20 2017 609000 . . . 609000 20 2016 305000 . . 305000 . 20 2015 304000 . 304000 . . 21 2017 292546298 . . . 292546304 21 2014 330467701 330467712 . . . 21 2016 292327723 . . 292327712 . 21 2015 315647667 . 315647680 . . 22 2015 5561719 . 5561719 . . 22 2016 6278254 . . 6278254 . 22 2014 6294419 6294419 . . . 22 2017 8196184 . . . 8196184 23 2016 2300000 . . 2300000 . 23 2017 2800000 . . . 2800000 23 2014 2000000 2000000 . . . 23 2015 2100000 . 2100000 . . 24 2016 730000 . . 730000 . 24 2017 730000 . . . 730000 24 2015 730000 . 730000 . . 24 2014 730000 730000 . . . 25 2017 421000 . . . 421000 25 2015 420000 . 420000 . . 25 2014 420000 420000 . . . 25 2016 420000 . . 420000 . end
Comment