Hello everyone,
I am estimating whether there is a threshold above which financial development has a negative effect on economic growth. My variables of interest are prcredtiBI and prcreditBI2 (quadratic term). The data are split in 5 year periods 1961-1965 , 1966-1970 etc. All explanatory variables are initial values , meaning explanatory variables take the first value in each period (1961, 1996 etc). Economic growth is calculated as (Yt-Yt-5)/5.
I am using system GMM and when I use lag 2 and more as instruments I obtain significant results for my variables of interest prcreditBI and prcreditBI2. Nevertheless, when I estimate the same model using all available lags I lose the significance of either the quadratic term or the linear term variable. I want to know if it is correct to use the second lag and more as instruments? Can someone please explain if using lag 2 and more is correct?
xtabond2 gr lgrowth prcreditB prcreditB2 log_trade log_govsize log_school linfl td* if period<9, gmm(L.
> ( lgrowth prcreditB prcreditB2 log_trade log_govsize log_school linfl) , lag(2 .) ) iv(td*) two robust
> ar(3)
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
td4 dropped due to collinearity
td9 dropped due to collinearity
td10 dropped due to collinearity
td11 dropped due to collinearity
Warning: Number of instruments may be large relative to number of observations.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: Country_ Number of obs = 567
Time variable : period Number of groups = 117
Number of instruments = 148 Obs per group: min = 1
Wald chi2(14) = 292.37 avg = 4.85
Prob > chi2 = 0.000 max = 8
------------------------------------------------------------------------------
| Corrected
gr | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lgrowth | -.7689202 .3082432 -2.49 0.013 -1.373066 -.1647746
prcreditB | 6.905971 2.156115 3.20 0.001 2.680063 11.13188
prcreditB2 | -4.228281 1.353518 -3.12 0.002 -6.881127 -1.575434
log_trade | -.1900365 .4802487 -0.40 0.692 -1.131307 .7512337
log_govsize | -2.145452 1.069133 -2.01 0.045 -4.240915 -.0499899
log_school | 1.897029 .4945887 3.84 0.000 .927653 2.866405
linfl | -.3022494 .1936457 -1.56 0.119 -.681788 .0772891
td1 | -.0600677 .7960421 -0.08 0.940 -1.620282 1.500146
td2 | .6802363 .7777636 0.87 0.382 -.8441524 2.204625
td3 | .0154354 .5971205 0.03 0.979 -1.154899 1.18577
td5 | -2.372172 .4649549 -5.10 0.000 -3.283467 -1.460878
td6 | -1.526232 .4668291 -3.27 0.001 -2.4412 -.6112635
td7 | -2.051561 .4730705 -4.34 0.000 -2.978762 -1.12436
td8 | -1.754049 .5397025 -3.25 0.001 -2.811847 -.6962519
_cons | 12.7255 3.329272 3.82 0.000 6.200247 19.25075
------------------------------------------------------------------------------
Instruments for first differences equation
Standard
D.(td1 td2 td3 td4 td5 td6 td7 td8 td9 td10 td11)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/10).(L.lgrowth L.prcreditB L.prcreditB2 L.log_trade L.log_govsize
L.log_school L.linfl)
Instruments for levels equation
Standard
td1 td2 td3 td4 td5 td6 td7 td8 td9 td10 td11
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.lgrowth L.prcreditB L.prcreditB2 L.log_trade L.log_govsize
L.log_school L.linfl)
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -3.45 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.71 Pr > z = 0.086
Arellano-Bond test for AR(3) in first differences: z = 0.25 Pr > z = 0.804
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(133) = 167.65 Prob > chi2 = 0.023
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(133) = 87.61 Prob > chi2 = 0.999
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(98) = 84.08 Prob > chi2 = 0.841
Difference (null H = exogenous): chi2(35) = 3.53 Prob > chi2 = 1.000
I am estimating whether there is a threshold above which financial development has a negative effect on economic growth. My variables of interest are prcredtiBI and prcreditBI2 (quadratic term). The data are split in 5 year periods 1961-1965 , 1966-1970 etc. All explanatory variables are initial values , meaning explanatory variables take the first value in each period (1961, 1996 etc). Economic growth is calculated as (Yt-Yt-5)/5.
I am using system GMM and when I use lag 2 and more as instruments I obtain significant results for my variables of interest prcreditBI and prcreditBI2. Nevertheless, when I estimate the same model using all available lags I lose the significance of either the quadratic term or the linear term variable. I want to know if it is correct to use the second lag and more as instruments? Can someone please explain if using lag 2 and more is correct?
xtabond2 gr lgrowth prcreditB prcreditB2 log_trade log_govsize log_school linfl td* if period<9, gmm(L.
> ( lgrowth prcreditB prcreditB2 log_trade log_govsize log_school linfl) , lag(2 .) ) iv(td*) two robust
> ar(3)
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
td4 dropped due to collinearity
td9 dropped due to collinearity
td10 dropped due to collinearity
td11 dropped due to collinearity
Warning: Number of instruments may be large relative to number of observations.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: Country_ Number of obs = 567
Time variable : period Number of groups = 117
Number of instruments = 148 Obs per group: min = 1
Wald chi2(14) = 292.37 avg = 4.85
Prob > chi2 = 0.000 max = 8
------------------------------------------------------------------------------
| Corrected
gr | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lgrowth | -.7689202 .3082432 -2.49 0.013 -1.373066 -.1647746
prcreditB | 6.905971 2.156115 3.20 0.001 2.680063 11.13188
prcreditB2 | -4.228281 1.353518 -3.12 0.002 -6.881127 -1.575434
log_trade | -.1900365 .4802487 -0.40 0.692 -1.131307 .7512337
log_govsize | -2.145452 1.069133 -2.01 0.045 -4.240915 -.0499899
log_school | 1.897029 .4945887 3.84 0.000 .927653 2.866405
linfl | -.3022494 .1936457 -1.56 0.119 -.681788 .0772891
td1 | -.0600677 .7960421 -0.08 0.940 -1.620282 1.500146
td2 | .6802363 .7777636 0.87 0.382 -.8441524 2.204625
td3 | .0154354 .5971205 0.03 0.979 -1.154899 1.18577
td5 | -2.372172 .4649549 -5.10 0.000 -3.283467 -1.460878
td6 | -1.526232 .4668291 -3.27 0.001 -2.4412 -.6112635
td7 | -2.051561 .4730705 -4.34 0.000 -2.978762 -1.12436
td8 | -1.754049 .5397025 -3.25 0.001 -2.811847 -.6962519
_cons | 12.7255 3.329272 3.82 0.000 6.200247 19.25075
------------------------------------------------------------------------------
Instruments for first differences equation
Standard
D.(td1 td2 td3 td4 td5 td6 td7 td8 td9 td10 td11)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/10).(L.lgrowth L.prcreditB L.prcreditB2 L.log_trade L.log_govsize
L.log_school L.linfl)
Instruments for levels equation
Standard
td1 td2 td3 td4 td5 td6 td7 td8 td9 td10 td11
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.lgrowth L.prcreditB L.prcreditB2 L.log_trade L.log_govsize
L.log_school L.linfl)
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -3.45 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.71 Pr > z = 0.086
Arellano-Bond test for AR(3) in first differences: z = 0.25 Pr > z = 0.804
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(133) = 167.65 Prob > chi2 = 0.023
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(133) = 87.61 Prob > chi2 = 0.999
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(98) = 84.08 Prob > chi2 = 0.841
Difference (null H = exogenous): chi2(35) = 3.53 Prob > chi2 = 1.000
Comment