Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Panel data mediation use --sgmediation--

    Dear all,
    I want to use the command--sgmediation- to analyze the mediation of panel data.I read that --sgmediation--can not work for panel data.But I think that this command also works for panel data.
    Here is my codes.Do you think it is right or wrong?
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input double(id year y x1 x2 x3)
    1 1 3 2 7 3
    1 2 2 1 6 4
    1 3 3 2 6 5
    1 4 4 2 5 6
    1 5 5 3 4 7
    2 1 6 4 5 8
    2 2 5 3 6 8
    2 3 5 3 5 7
    2 4 4 2 4 6
    2 5 3 3 5 5
    3 1 4 5 6 4
    3 2 5 6 7 3
    3 3 6 7 8 6
    3 4 5 8 8 7
    3 5 4 6 7 8
    3 6 3 4 6 9
    4 1 6 5 5 8
    4 2 5 6 4 7
    4 3 6 7 3 6
    4 4 7 7 . 5
    4 5 8 6 2 4
    4 6 9 5 4 3
    end
     xi:sgmediation y,mv(x2) iv(x1) cv(x3 i.id i.year)
    i.id              _Iid_1-4            (naturally coded; _Iid_1 omitted)
    i.year            _Iyear_1-6          (naturally coded; _Iyear_1 omitted)
    
    Model with dv regressed on iv (path c)
    
          Source |       SS           df       MS      Number of obs   =        21
    -------------+----------------------------------   F(10, 10)       =      2.63
           Model |  41.4558892        10  4.14558892   Prob > F        =    0.0718
        Residual |  15.7822061        10  1.57822061   R-squared       =    0.7243
    -------------+----------------------------------   Adj R-squared   =    0.4485
           Total |  57.2380952        20  2.86190476   Root MSE        =    1.2563
    
    ------------------------------------------------------------------------------
               y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
              x1 |      0.896      0.398     2.25   0.048        0.009       1.782
              x3 |     -0.170      0.164    -1.04   0.325       -0.534       0.195
          _Iid_2 |      0.610      0.922     0.66   0.523       -1.445       2.664
          _Iid_3 |     -2.615      1.866    -1.40   0.191       -6.773       1.542
          _Iid_4 |     -0.291      1.857    -0.16   0.879       -4.429       3.846
        _Iyear_2 |     -0.542      0.889    -0.61   0.556       -2.524       1.439
        _Iyear_3 |     -0.379      0.937    -0.41   0.694       -2.466       1.707
        _Iyear_4 |     -0.223      1.005    -0.22   0.829       -2.462       2.016
        _Iyear_5 |     -0.155      0.910    -0.17   0.868       -2.184       1.873
        _Iyear_6 |      1.724      1.254     1.37   0.199       -1.071       4.518
           _cons |      2.717      1.254     2.17   0.056       -0.077       5.510
    ------------------------------------------------------------------------------
    
    Model with mediator regressed on iv (path a)
    
          Source |       SS           df       MS      Number of obs   =        21
    -------------+----------------------------------   F(10, 10)       =      3.55
           Model |  38.1930886        10  3.81930886   Prob > F        =    0.0290
        Residual |  10.7592924        10  1.07592924   R-squared       =    0.7802
    -------------+----------------------------------   Adj R-squared   =    0.5604
           Total |   48.952381        20  2.44761905   Root MSE        =    1.0373
    
    ------------------------------------------------------------------------------
              x2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
              x1 |      0.307      0.328     0.94   0.372       -0.425       1.039
              x3 |      0.014      0.135     0.11   0.918       -0.287       0.315
          _Iid_2 |     -0.933      0.761    -1.23   0.248       -2.629       0.763
          _Iid_3 |      0.122      1.541     0.08   0.938       -3.310       3.555
          _Iid_4 |     -3.274      1.533    -2.14   0.059       -6.690       0.143
        _Iyear_2 |      0.004      0.734     0.00   0.996       -1.632       1.640
        _Iyear_3 |     -0.484      0.773    -0.63   0.545       -2.207       1.239
        _Iyear_4 |     -0.843      0.830    -1.02   0.334       -2.691       1.006
        _Iyear_5 |     -1.407      0.752    -1.87   0.091       -3.082       0.267
        _Iyear_6 |     -0.353      1.036    -0.34   0.741       -2.660       1.955
           _cons |      5.460      1.035     5.27   0.000        3.153       7.767
    ------------------------------------------------------------------------------
    
    Model with dv regressed on mediator and iv (paths b and c')
    
          Source |       SS           df       MS      Number of obs   =        21
    -------------+----------------------------------   F(11, 9)        =      2.24
           Model |  41.9107839        11  3.81007126   Prob > F        =    0.1184
        Residual |  15.3273113         9  1.70303459   R-squared       =    0.7322
    -------------+----------------------------------   Adj R-squared   =    0.4049
           Total |  57.2380952        20  2.86190476   Root MSE        =     1.305
    
    ------------------------------------------------------------------------------
               y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
              x2 |     -0.206      0.398    -0.52   0.618       -1.106       0.694
              x1 |      0.959      0.431     2.23   0.053       -0.016       1.934
              x3 |     -0.167      0.170    -0.98   0.353       -0.551       0.218
          _Iid_2 |      0.418      1.027     0.41   0.694       -1.906       2.741
          _Iid_3 |     -2.590      1.939    -1.34   0.214       -6.976       1.796
          _Iid_4 |     -0.964      2.328    -0.41   0.688       -6.229       4.301
        _Iyear_2 |     -0.542      0.924    -0.59   0.572       -2.631       1.548
        _Iyear_3 |     -0.479      0.992    -0.48   0.641       -2.722       1.765
        _Iyear_4 |     -0.397      1.096    -0.36   0.726       -2.877       2.084
        _Iyear_5 |     -0.445      1.099    -0.40   0.695       -2.931       2.041
        _Iyear_6 |      1.651      1.311     1.26   0.239       -1.313       4.616
           _cons |      3.839      2.533     1.52   0.164       -1.891       9.569
    ------------------------------------------------------------------------------
    
    Sobel-Goodman Mediation Tests
    
                         Coef         Std Err     Z           P>|Z|
    Sobel               -.0631524    .13961254  -.4523      .65102373
    Goodman-1 (Aroian)  -.0631524    .19122088  -.3303      .74120433
    Goodman-2           -.0631524    .04917211  -1.284      .19903234
    
                        Coef      Std Err    Z          P>|Z|
    a coefficient   =  .307133   .328431    .93515    .349711
    b coefficient   = -.205619    .39785  -.516825    .605278
    Indirect effect = -.063152   .139613   -.45234    .651024
      Direct effect =  .958806   .430893   2.22516     .02607
       Total effect =  .895654   .397774   2.25166    .024344
    
    Proportion of total effect that is mediated:  -.07050982
    Ratio of indirect to direct effect:           -.06586565
    Ratio of total to direct effect:              .93413435
    
    tab id,gen(dum_id)
    
             id |      Freq.     Percent        Cum.
    ------------+-----------------------------------
              1 |          5       22.73       22.73
              2 |          5       22.73       45.45
              3 |          6       27.27       72.73
              4 |          6       27.27      100.00
    ------------+-----------------------------------
          Total |         22      100.00
    
    . tab year,gen(dum_year)
    
           year |      Freq.     Percent        Cum.
    ------------+-----------------------------------
              1 |          4       18.18       18.18
              2 |          4       18.18       36.36
              3 |          4       18.18       54.55
              4 |          4       18.18       72.73
              5 |          4       18.18       90.91
              6 |          2        9.09      100.00
    ------------+-----------------------------------
          Total |         22      100.00
    
    . bootstrap r(ind_eff) r(dir_eff), reps(500) : sgmediation y, mv(x2) iv(x1) cv(x3 dum_id* dum_year*)
    (running sgmediation on estimation sample)
    
    Bootstrap replications (500)
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
    xxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxx.x.xx    50
    xxxxx.xxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxx   100
    xxxxxxxxx.xxxxxxxxxx.xx.xxxxxxxxx.xxx.xx.xxxxxx.xx   150
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   200
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxxxxxx.   250
    xxxxxx.xxxxxxx.xx..xxxxxxxx.xxxxxxxxxx..xxxxxxxxxx   300
    xxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   350
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   400
    .xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxx   450
    xxxxxxxxxx.xxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxx.x.x..x   500
    
    Bootstrap results                               Number of obs     =         21
                                                    Replications      =         30
    
          command:  sgmediation y, mv(x2) iv(x1) cv(x3 dum_id* dum_year*)
            _bs_1:  r(ind_eff)
            _bs_2:  r(dir_eff)
    
    ------------------------------------------------------------------------------
                 |   Observed   Bootstrap                         Normal-based
                 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           _bs_1 |     -0.063      0.641    -0.10   0.921       -1.319       1.192
           _bs_2 |      0.959      0.911     1.05   0.293       -0.828       2.745
    ------------------------------------------------------------------------------
    Note: One or more parameters could not be estimated in 470 bootstrap
          replicates; standard-error estimates include only complete replications.
    This is just a very simple example. The data I input at will.Do you think the codes is right or wrong?I just put individual fixed effects and time fixed effects in cv( ).But in the bootstrap,there are many "xxxxxxxxxxxx......".I don't know why.


    Best
    Raymond
    Best regards.

    Raymond Zhang
    Stata 17.0,MP

  • #2
    Many members are unfamiliar with the sgmediation command, but some may be interested in learning about it and perhaps helping you.

    So the following advice in the Statalist FAQ linked to from the top of the page, as well as from the Advice on Posting link on the page you used to create your post is pertinent.

    12.1 What to say about your commands and your problem

    If you are using community-contributed (also known as user-written) commands, explain that and say where they came from: the Stata Journal, SSC, or other archives. This helps (often crucially) in explaining your precise problem, and it alerts readers to commands that may be interesting or useful to them.

    Comment


    • #3
      Hello thank you but how to install sgmediation as ssc install does not work for it. please guide in this regards

      Comment

      Working...
      X