Dear all,
I want to use the command--sgmediation- to analyze the mediation of panel data.I read that --sgmediation--can not work for panel data.But I think that this command also works for panel data.
Here is my codes.Do you think it is right or wrong?
This is just a very simple example. The data I input at will.Do you think the codes is right or wrong?I just put individual fixed effects and time fixed effects in cv( ).But in the bootstrap,there are many "xxxxxxxxxxxx......".I don't know why.
Best
Raymond
I want to use the command--sgmediation- to analyze the mediation of panel data.I read that --sgmediation--can not work for panel data.But I think that this command also works for panel data.
Here is my codes.Do you think it is right or wrong?
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double(id year y x1 x2 x3) 1 1 3 2 7 3 1 2 2 1 6 4 1 3 3 2 6 5 1 4 4 2 5 6 1 5 5 3 4 7 2 1 6 4 5 8 2 2 5 3 6 8 2 3 5 3 5 7 2 4 4 2 4 6 2 5 3 3 5 5 3 1 4 5 6 4 3 2 5 6 7 3 3 3 6 7 8 6 3 4 5 8 8 7 3 5 4 6 7 8 3 6 3 4 6 9 4 1 6 5 5 8 4 2 5 6 4 7 4 3 6 7 3 6 4 4 7 7 . 5 4 5 8 6 2 4 4 6 9 5 4 3 end xi:sgmediation y,mv(x2) iv(x1) cv(x3 i.id i.year) i.id _Iid_1-4 (naturally coded; _Iid_1 omitted) i.year _Iyear_1-6 (naturally coded; _Iyear_1 omitted) Model with dv regressed on iv (path c) Source | SS df MS Number of obs = 21 -------------+---------------------------------- F(10, 10) = 2.63 Model | 41.4558892 10 4.14558892 Prob > F = 0.0718 Residual | 15.7822061 10 1.57822061 R-squared = 0.7243 -------------+---------------------------------- Adj R-squared = 0.4485 Total | 57.2380952 20 2.86190476 Root MSE = 1.2563 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | 0.896 0.398 2.25 0.048 0.009 1.782 x3 | -0.170 0.164 -1.04 0.325 -0.534 0.195 _Iid_2 | 0.610 0.922 0.66 0.523 -1.445 2.664 _Iid_3 | -2.615 1.866 -1.40 0.191 -6.773 1.542 _Iid_4 | -0.291 1.857 -0.16 0.879 -4.429 3.846 _Iyear_2 | -0.542 0.889 -0.61 0.556 -2.524 1.439 _Iyear_3 | -0.379 0.937 -0.41 0.694 -2.466 1.707 _Iyear_4 | -0.223 1.005 -0.22 0.829 -2.462 2.016 _Iyear_5 | -0.155 0.910 -0.17 0.868 -2.184 1.873 _Iyear_6 | 1.724 1.254 1.37 0.199 -1.071 4.518 _cons | 2.717 1.254 2.17 0.056 -0.077 5.510 ------------------------------------------------------------------------------ Model with mediator regressed on iv (path a) Source | SS df MS Number of obs = 21 -------------+---------------------------------- F(10, 10) = 3.55 Model | 38.1930886 10 3.81930886 Prob > F = 0.0290 Residual | 10.7592924 10 1.07592924 R-squared = 0.7802 -------------+---------------------------------- Adj R-squared = 0.5604 Total | 48.952381 20 2.44761905 Root MSE = 1.0373 ------------------------------------------------------------------------------ x2 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | 0.307 0.328 0.94 0.372 -0.425 1.039 x3 | 0.014 0.135 0.11 0.918 -0.287 0.315 _Iid_2 | -0.933 0.761 -1.23 0.248 -2.629 0.763 _Iid_3 | 0.122 1.541 0.08 0.938 -3.310 3.555 _Iid_4 | -3.274 1.533 -2.14 0.059 -6.690 0.143 _Iyear_2 | 0.004 0.734 0.00 0.996 -1.632 1.640 _Iyear_3 | -0.484 0.773 -0.63 0.545 -2.207 1.239 _Iyear_4 | -0.843 0.830 -1.02 0.334 -2.691 1.006 _Iyear_5 | -1.407 0.752 -1.87 0.091 -3.082 0.267 _Iyear_6 | -0.353 1.036 -0.34 0.741 -2.660 1.955 _cons | 5.460 1.035 5.27 0.000 3.153 7.767 ------------------------------------------------------------------------------ Model with dv regressed on mediator and iv (paths b and c') Source | SS df MS Number of obs = 21 -------------+---------------------------------- F(11, 9) = 2.24 Model | 41.9107839 11 3.81007126 Prob > F = 0.1184 Residual | 15.3273113 9 1.70303459 R-squared = 0.7322 -------------+---------------------------------- Adj R-squared = 0.4049 Total | 57.2380952 20 2.86190476 Root MSE = 1.305 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x2 | -0.206 0.398 -0.52 0.618 -1.106 0.694 x1 | 0.959 0.431 2.23 0.053 -0.016 1.934 x3 | -0.167 0.170 -0.98 0.353 -0.551 0.218 _Iid_2 | 0.418 1.027 0.41 0.694 -1.906 2.741 _Iid_3 | -2.590 1.939 -1.34 0.214 -6.976 1.796 _Iid_4 | -0.964 2.328 -0.41 0.688 -6.229 4.301 _Iyear_2 | -0.542 0.924 -0.59 0.572 -2.631 1.548 _Iyear_3 | -0.479 0.992 -0.48 0.641 -2.722 1.765 _Iyear_4 | -0.397 1.096 -0.36 0.726 -2.877 2.084 _Iyear_5 | -0.445 1.099 -0.40 0.695 -2.931 2.041 _Iyear_6 | 1.651 1.311 1.26 0.239 -1.313 4.616 _cons | 3.839 2.533 1.52 0.164 -1.891 9.569 ------------------------------------------------------------------------------ Sobel-Goodman Mediation Tests Coef Std Err Z P>|Z| Sobel -.0631524 .13961254 -.4523 .65102373 Goodman-1 (Aroian) -.0631524 .19122088 -.3303 .74120433 Goodman-2 -.0631524 .04917211 -1.284 .19903234 Coef Std Err Z P>|Z| a coefficient = .307133 .328431 .93515 .349711 b coefficient = -.205619 .39785 -.516825 .605278 Indirect effect = -.063152 .139613 -.45234 .651024 Direct effect = .958806 .430893 2.22516 .02607 Total effect = .895654 .397774 2.25166 .024344 Proportion of total effect that is mediated: -.07050982 Ratio of indirect to direct effect: -.06586565 Ratio of total to direct effect: .93413435 tab id,gen(dum_id) id | Freq. Percent Cum. ------------+----------------------------------- 1 | 5 22.73 22.73 2 | 5 22.73 45.45 3 | 6 27.27 72.73 4 | 6 27.27 100.00 ------------+----------------------------------- Total | 22 100.00 . tab year,gen(dum_year) year | Freq. Percent Cum. ------------+----------------------------------- 1 | 4 18.18 18.18 2 | 4 18.18 36.36 3 | 4 18.18 54.55 4 | 4 18.18 72.73 5 | 4 18.18 90.91 6 | 2 9.09 100.00 ------------+----------------------------------- Total | 22 100.00 . bootstrap r(ind_eff) r(dir_eff), reps(500) : sgmediation y, mv(x2) iv(x1) cv(x3 dum_id* dum_year*) (running sgmediation on estimation sample) Bootstrap replications (500) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 xxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxx.x.xx 50 xxxxx.xxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxx 100 xxxxxxxxx.xxxxxxxxxx.xx.xxxxxxxxx.xxx.xx.xxxxxx.xx 150 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 200 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxxxxxx. 250 xxxxxx.xxxxxxx.xx..xxxxxxxx.xxxxxxxxxx..xxxxxxxxxx 300 xxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 350 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 400 .xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxx 450 xxxxxxxxxx.xxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxx.x.x..x 500 Bootstrap results Number of obs = 21 Replications = 30 command: sgmediation y, mv(x2) iv(x1) cv(x3 dum_id* dum_year*) _bs_1: r(ind_eff) _bs_2: r(dir_eff) ------------------------------------------------------------------------------ | Observed Bootstrap Normal-based | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _bs_1 | -0.063 0.641 -0.10 0.921 -1.319 1.192 _bs_2 | 0.959 0.911 1.05 0.293 -0.828 2.745 ------------------------------------------------------------------------------ Note: One or more parameters could not be estimated in 470 bootstrap replicates; standard-error estimates include only complete replications.
Best
Raymond
Comment