Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • fuzzy fsQCA bestfit displaying few cases

    Hello Statalist,

    I am conducting a fuzzy-set QCA using the 'fuzzy' package written by Longest & Vaisey (2008). I am looking at the following outcome variable:

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float A
    0
    0
    1
    1
    1
    0
    0
    0
    1
    1
    1
    1
    0
    0
    0
    1
    1
    0
    0
    0
    0
    0
    1
    1
    0
    1
    1
    1
    0
    0
    0
    1
    0
    0
    1
    0
    0
    0
    1
    1
    1
    1
    0
    0
    1
    0
    0
    1
    0
    1
    1
    1
    1
    0
    1
    1
    1
    1
    0
    1
    1
    1
    1
    1
    1
    1
    1
    0
    1
    1
    1
    0
    0
    1
    1
    0
    1
    1
    1
    1
    1
    1
    1
    1
    0
    1
    1
    1
    1
    1
    1
    1
    1
    0
    0
    1
    1
    1
    1
    0
    end
    label values A A
    label def A 0 "Does not provided extended maternity leave", modify
    label def A 1 "Provides extended maternity leave", modify
    This outcome variable has 65 observations that take the value of 1:
    Code:
    . tab A, nolab
    
       Extended |
      maternity |
          leave |      Freq.     Percent        Cum.
    ------------+-----------------------------------
              0 |         39       37.50       37.50
              1 |         65       62.50      100.00
    ------------+-----------------------------------
          Total |        104      100.00

    In my fsQCA I am examining the following five conditions:
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float S
    0
    1
    1
    0
    0
    0
    0
    1
    1
    0
    0
    0
    1
    0
    1
    0
    0
    0
    1
    0
    0
    0
    0
    0
    1
    0
    0
    0
    1
    0
    0
    0
    0
    0
    0
    1
    1
    1
    0
    1
    0
    1
    1
    1
    1
    1
    0
    0
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    0
    1
    0
    0
    0
    0
    0
    0
    0
    1
    0
    0
    0
    1
    1
    0
    0
    1
    0
    1
    0
    0
    0
    0
    1
    0
    0
    0
    1
    0
    0
    1
    0
    0
    1
    1
    1
    0
    0
    0
    0
    1
    end
    label values S S
    label def S 0 "California", modify
    label def S 1 "New York", modify
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float O
    .67
    .33
    .67
    .33
     .5
    .33
      1
     .5
    .33
    .67
      1
     .5
     .5
    .33
     .5
    .33
     .5
    .33
    .33
     .5
     .5
      1
     .5
     .5
     .5
    .33
    .67
     .5
    .33
     .5
    .33
     .5
     .5
     .5
    .33
      1
    .67
     .5
     .5
    .67
     .5
    .67
    .67
    .67
    .33
    .67
      1
     .5
    .33
    .67
     .5
     .5
    .67
      1
    .33
      1
      1
     .5
    .67
      1
      1
     .5
     .5
      1
    .33
      1
     .5
      1
      1
      1
    .33
    .67
    .67
     .5
     .5
     .5
     .5
    .67
    .33
     .5
      1
      1
     .5
    .33
    .67
     .5
      1
    .67
    .67
    .67
     .5
    .33
     .5
      1
    .67
    .67
    .33
    .67
    .67
      1
    end
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float F
     1
    .5
    .5
     1
    .5
     1
     1
    .5
    .5
     0
    .5
    .5
    .5
     0
    .5
    .5
    .5
    .5
     0
     0
     0
    .5
    .5
    .5
    .5
    .5
     1
     0
    .5
    .5
    .5
     0
    .5
     0
     0
    .5
    .5
    .5
     0
    .5
    .5
     1
    .5
    .5
    .5
     0
    .5
    .5
    .5
     1
     1
     0
    .5
    .5
     0
    .5
     0
     1
    .5
    .5
     0
    .5
    .5
    .5
     1
    .5
    .5
    .5
    .5
     1
    .5
    .5
     1
     1
     1
    .5
    .5
    .5
     0
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
    .5
     1
     0
    .5
    .5
     1
    end
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float T
    .
    1
    1
    1
    0
    1
    1
    0
    1
    1
    1
    0
    1
    1
    1
    1
    0
    1
    1
    .
    1
    1
    1
    1
    0
    1
    0
    1
    1
    1
    0
    0
    1
    1
    0
    1
    1
    0
    0
    1
    1
    0
    1
    0
    1
    1
    1
    1
    0
    1
    0
    0
    1
    1
    1
    1
    0
    0
    1
    1
    0
    1
    0
    1
    1
    1
    1
    1
    1
    1
    0
    1
    1
    1
    1
    1
    1
    1
    0
    0
    1
    1
    1
    1
    1
    0
    1
    1
    1
    0
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    end
    label values T tightness
    label def tightness 0 "not tight (high skills easy to fill)", modify
    label def tightness 1 "tight (high skills hard to fill)", modify
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float I
    0
    0
    0
    0
    0
    0
    1
    1
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    1
    1
    1
    1
    1
    1
    1
    0
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    0
    1
    1
    1
    1
    0
    0
    1
    1
    1
    0
    0
    0
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    0
    0
    0
    1
    1
    1
    1
    1
    end
    label values I I
    label def I 0 "Mixed Industry Skill-Profile", modify
    label def I 1 "High-General Industry Skill-Profile", modify

    In a first step I am trying to assess which configurations of conditions contain the greatest number of cases. To this end, I used the following code:
    Code:
    fuzzy A S O F T I
    tabulate bestfit, sort
    The result I get is
    Code:
    . fuzzy A S O F T I
    
    . tabulate bestfit, sort 
    
        bestfit |      Freq.     Percent        Cum.
    ------------+-----------------------------------
          sOFTI |          4       16.67       16.67
          SOFTI |          2        8.33       25.00
          SoFTI |          2        8.33       33.33
          sOfti |          2        8.33       41.67
          soFTi |          2        8.33       50.00
          sofTI |          2        8.33       58.33
          sofTi |          2        8.33       66.67
          softI |          2        8.33       75.00
          SOFtI |          1        4.17       79.17
          SOfTI |          1        4.17       83.33
          SofTi |          1        4.17       87.50
          sOFti |          1        4.17       91.67
          sOfTi |          1        4.17       95.83
          soFTI |          1        4.17      100.00
    ------------+-----------------------------------
          Total |         24      100.00
    If I understand the fuzzy bestfit command correctly, I should be getting a table with a count of 65 cases, correct? I do not understand why the bestfit table is only displaying 24 cases.

    I am aware that Longest & Vaisey mention that cases scoring 0.5 on all individual predictors sets will not appear in the bestfit table because they belong equally to all configurations. But given that only two of my conditions are calibrated to allow a score of 0.5, there can't be a case in which all predictors have a score of 0.5.

    Furthermore, I am also aware that a similar question was previously posted and left unanswered ten years ago. However, I was hoping for better luck at this moment in time.

Working...
X