Hi Statalist!
I am trying to perform a latent class analysis and I am very new to this method, so I hope you will understand if my question is a bit naïve.
I would like to perform the analysis using nine categorical variables (each with five categories) and obtain three classes. Here is the code I am using:
Once I try to estimate the marginal predicted means of the outcome within each latent class (estat lcmean), the command seems to run forever, without giving any output. Looking on the forum, I am supposing that the issue is related to one coefficient being above 15. Below you can find part of the output, and the high coefficient in red.
As I understood, I should constrain the coefficient to 15. I tried to use the following code, but it is not adequate for my categorical variable.
Could anyone please suggest me the right specifications? Any suggestion is be more than welcome,
Kind regards,
Marla
I am trying to perform a latent class analysis and I am very new to this method, so I hope you will understand if my question is a bit naïve.
I would like to perform the analysis using nine categorical variables (each with five categories) and obtain three classes. Here is the code I am using:
Code:
gsem (e4_1b e4_2b e4_3b e4_4b e4_5b e4_6b e4_7b e4_8b e4_9b <-, ologit), lclass(C 3)
Code:
Class : 2
Response : e4_1b
Family : ordinal
Link : logit
Response : e4_2b
Family : ordinal
Link : logit
Response : e4_3b
Family : ordinal
Link : logit
Response : e4_4b
Family : ordinal
Link : logit
Response : e4_5b
Family : ordinal
Link : logit
Response : e4_6b
Family : ordinal
Link : logit
Response : e4_7b
Family : ordinal
Link : logit
Response : e4_8b
Family : ordinal
Link : logit
Response : e4_9b
Family : ordinal
Link : logit
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
/e4_1b |
cut1 | -6.207387 .2099544 -6.61889 -5.795884
cut2 | -4.585708 .09238 -4.766769 -4.404646
cut3 | -1.894731 .0285634 -1.950714 -1.838748
cut4 | .7498389 .0206396 .7093861 .7902917
-------------+----------------------------------------------------------------
/e4_2b |
cut1 | -3.075159 .0378004 -3.149246 -3.001071
cut2 | -.6201423 .0158303 -.6511692 -.5891154
cut3 | 1.625804 .0206937 1.585246 1.666363
cut4 | 4.059866 .0600725 3.942126 4.177606
-------------+----------------------------------------------------------------
/e4_3b |
cut1 | -4.235327 .0753749 -4.383059 -4.087595
cut2 | -2.243794 .0294187 -2.301453 -2.186134
cut3 | -.249513 .0220957 -.2928197 -.2062063
cut4 | 2.190033 .0348925 2.121645 2.258421
-------------+----------------------------------------------------------------
/e4_4b |
cut1 | -24.39119 2397.723 -4723.841 4675.059
cut2 | -3.252751 .0575151 -3.365479 -3.140024
cut3 | -.6396046 .0260331 -.6906285 -.5885807
cut4 | 2.04866 .0369879 1.976165 2.121155
-------------+----------------------------------------------------------------
/e4_5b |
cut1 | -5.785578 .1817201 -6.141743 -5.429414
cut2 | -2.87042 .0414458 -2.951652 -2.789188
cut3 | -.8560699 .0229513 -.9010535 -.8110862
cut4 | 1.127883 .0237217 1.08139 1.174377
-------------+----------------------------------------------------------------
/e4_6b |
cut1 | -.2159903 .0155038 -.2463771 -.1856035
cut2 | 1.242691 .0190969 1.205261 1.28012
cut3 | 2.667265 .0303306 2.607818 2.726711
cut4 | 5.438793 .1438952 5.156764 5.720823
-------------+----------------------------------------------------------------
/e4_7b |
cut1 | -1.62553 .0205138 -1.665736 -1.585324
cut2 | .0296444 .0151189 .0000119 .0592768
cut3 | 1.490041 .0191115 1.452583 1.527499
cut4 | 3.487356 .0482501 3.392788 3.581925
-------------+----------------------------------------------------------------
/e4_8b |
cut1 | 1.331648 .023303 1.285975 1.377321
cut2 | 2.582377 .0354519 2.512892 2.651861
cut3 | 3.56694 .043742 3.481207 3.652673
cut4 | 6.136812 .1994962 5.745807 6.527817
-------------+----------------------------------------------------------------
/e4_9b |
cut1 | .0988198 .0149272 .0695631 .1280765
cut2 | 1.434078 .0194443 1.395968 1.472188
cut3 | 2.952968 .0329211 2.888444 3.017492
cut4 | 5.747459 .1649939 5.424077 6.070841
------------------------------------------------------------------------------
Code:
gsem (e4_1b e4_2b e4_3b e4_4b e4_5b e4_6b e4_7b e4_8b e4_9b <- ) (2: e4_4b <- _cons@15) , ologit lclass(C 3)
Kind regards,
Marla
Comment