Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Too Large Wald chi2 Statistics

    I am following the work of Acemolug, Restrepo(2020). Trying to figure out the effect of adopting robot to labor market variables..

    Main dependent variable is increase in real wage, and explanatory variable is index of adopting Robot called APR

    I ran Panel IV with fixed effect(industry, time). I also added year dummy, and control variables like ratio of female workers

    My problem is that when I include control variables like female rato, STATA shows me some unplausbly large Wald Chi2 Statistics...like 58903.17

    Can this result simply be interpreted as the high goodness- of- fitness of this model? or is that related to lack of observations or so??

    I attach the code i used and result of baseline Model and model of including control variable

    Code:
    xtivreg delta_wage (KoreanAPR = APR_WestEurope) i.year if year >= 2005, fe vce(robust)
    xtivreg delta_wage (KoreanAPR = APR_WestEurope) i.year delta_female if year >= 2005, fe vce(robust)
    Click image for larger version

Name:	result1.png
Views:	1
Size:	46.3 KB
ID:	1577240

    Click image for larger version

Name:	result2.png
Views:	1
Size:	50.0 KB
ID:	1577241

    Attached Files
    Last edited by ByungHo Lee; 14 Oct 2020, 21:00.

  • #2
    Code:
    xtivreg delta_wage  (KoreanAPR = APR_WestEurope) i.year  if year >= 2005, fe vce(robust)
    
    xtivreg delta_wage  (KoreanAPR = APR_WestEurope) i.year  if year >= 2005, fe vce(robust)
    
    Fixed-effects (within) IV regression            Number of obs     =        186
    Group variable: industry                        Number of groups  =         15
    
    R-sq:                                           Obs per group:
         within  =      .                                         min =         11
         between = 0.0133                                         avg =       12.4
         overall = 0.0000                                         max =         13
    
    
                                                    Wald chi2(14)     =    5570.31
    corr(u_i, Xb)  = -0.4589                        Prob > chi2       =     0.0000
    
                                  (Std. Err. adjusted for 15 clusters in industry)
    ------------------------------------------------------------------------------
                 |               Robust
      delta_wage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
       KoreanAPR |   37.34756   71.53228     0.52   0.602    -102.8531    177.5482
                 |
            year |
           2006  |   4.301381   28.03751     0.15   0.878    -50.65113    59.25389
           2007  |   6.559273    27.4228     0.24   0.811    -47.18843    60.30698
           2008  |  -4.274475   24.33571    -0.18   0.861    -51.97159    43.42264
           2009  |  -2.065216   30.34125    -0.07   0.946    -61.53297    57.40254
           2010  |   4.011619    17.6048     0.23   0.820    -30.49315    38.51638
           2011  |  -19.10006   29.90251    -0.64   0.523     -77.7079    39.50777
           2012  |  -2.664256   15.86407    -0.17   0.867    -33.75725    28.42874
           2013  |  -21.49211   42.62362    -0.50   0.614    -105.0329    62.04866
           2014  |  -14.17789   25.09415    -0.56   0.572    -63.36152    35.00575
           2015  |  -31.58008   57.95919    -0.54   0.586     -145.178    82.01784
           2016  |  -55.80191   127.1773    -0.44   0.661    -305.0649    193.4611
           2017  |  -2.721155   35.88661    -0.08   0.940    -73.05762    67.61531
                 |
           _cons |   2.387502   25.36503     0.09   0.925    -47.32705    52.10206
    -------------+----------------------------------------------------------------
         sigma_u |  26.642091
         sigma_e |  55.031049
             rho |  .18987687   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    Instrumented:   KoreanAPR
    Instruments:    2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
                    2012.year 2013.year 2014.year 2015.year 2016.year 2017.year
                    APR_WestEurope
    ------------------------------------------------------------------------------
    
    
    xtivreg delta_wage  (KoreanAPR = APR_WestEurope) i.year delta_female if year >= 2005, fe vce(robust)
    
    
    Fixed-effects (within) IV regression            Number of obs     =        186
    Group variable: industry                        Number of groups  =         15
    
    R-sq:                                           Obs per group:
         within  =      .                                         min =         11
         between = 0.0171                                         avg =       12.4
         overall = 0.0000                                         max =         13
    
    
                                                    Wald chi2(14)     =   58903.17
    corr(u_i, Xb)  = -0.4558                        Prob > chi2       =     0.0000
    
                                  (Std. Err. adjusted for 15 clusters in industry)
    ------------------------------------------------------------------------------
                 |               Robust
      delta_wage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
       KoreanAPR |   31.01163   54.28861     0.57   0.568     -75.3921    137.4154
                 |
            year |
           2006  |   5.235038   23.94094     0.22   0.827    -41.68833    52.15841
           2007  |   5.842981   22.22761     0.26   0.793    -37.72233    49.40829
           2008  |  -2.378216    22.0432    -0.11   0.914    -45.58209    40.82566
           2009  |  -3.299281   24.38023    -0.14   0.892    -51.08366     44.4851
           2010  |   3.508987   14.23509     0.25   0.805    -24.39128    31.40926
           2011  |  -16.78282   23.56316    -0.71   0.476    -62.96576    29.40011
           2012  |  -3.253034   12.97941    -0.25   0.802    -28.69222    22.18615
           2013  |  -17.92023   33.39964    -0.54   0.592    -83.38233    47.54187
           2014  |  -12.23234   20.33676    -0.60   0.548    -52.09166    27.62697
           2015  |  -26.78167   44.46508    -0.60   0.547    -113.9316    60.36828
           2016  |  -47.19806    99.1504    -0.48   0.634    -241.5293    147.1332
           2017  |  -2.855652   29.74257    -0.10   0.924    -61.15001    55.43871
                 |
    delta_female |   2.565031   3.895258     0.66   0.510    -5.069534     10.1996
           _cons |   3.333247   20.46997     0.16   0.871    -36.78715    43.45364
    -------------+----------------------------------------------------------------
         sigma_u |  21.939044
         sigma_e |  46.104122
             rho |  .18463289   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    Instrumented:   KoreanAPR
    Instruments:    2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
                    2012.year 2013.year 2014.year 2015.year 2016.year 2017.year
                    delta_female APR_WestEurope
    ------------------------------------------------------------------------------

    Comment


    • #3
      ByungHo:
      my guess is that your model is misspecified, regardless endogeneity.
      Despite your sky-rocketing chi2 ststistic, the confidence intervals of your predictors are remarkably wide.
      Moreover, the Rsq-within is left unreported.
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #4
        Thanks for comment! Carlo

        As you mentioned the model seems to have some misspecification problems

        But that could be happened because of the shortage of data. The data of robot before 2009 seems to have some problem so many missing values...

        So, as I excluded sample before 2010, then the model seems to be fitted well

        But the problem of sky-rocketting wald chi(2) problem still remains.

        Under is the model which included control variables for female and export
        The coefficient for year dummy still seems to have wide confidence intervals but the APR seems to have reasonable results

        Code:
        xtivreg delta_wage  (KoreanAPR = APR_WestEurope) i.year delta_female delta_export
        >  if year > 2009, fe vce(robust)
        
        Fixed-effects (within) IV regression            Number of obs     =        104
        Group variable: industry                        Number of groups  =         13
        
        R-sq:                                           Obs per group:
             within  =      .                                         min =          8
             between = 0.0147                                         avg =        8.0
             overall = 0.0082                                         max =          8
        
        
                                                        Wald chi2(10)     =    1068.04
        corr(u_i, Xb)  = -0.5174                        Prob > chi2       =     0.0000
        
                                      (Std. Err. adjusted for 13 clusters in industry)
        ------------------------------------------------------------------------------
                     |               Robust
          delta_wage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
           KoreanAPR |  -5.924363   2.701318    -2.19   0.028    -11.21885   -.6298778
                     |
                year |
               2011  |  -7.621427   9.667232    -0.79   0.430    -26.56885      11.326
               2012  |  -3.082289   2.174277    -1.42   0.156    -7.343794    1.179217
               2013  |  -1.184164   4.823908    -0.25   0.806    -10.63885    8.270522
               2014  |  -3.744533   2.922889    -1.28   0.200    -9.473289    1.984224
               2015  |  -.0192173    3.90352    -0.00   0.996    -7.669976    7.631541
               2016  |   5.073968   8.659806     0.59   0.558    -11.89894    22.04688
               2017  |  -6.080655   2.033888    -2.99   0.003      -10.067   -2.094308
                     |
        delta_female |   1.427692   4.478519     0.32   0.750    -7.350044    10.20543
        delta_export |   .0199187   .1261606     0.16   0.875    -.2273514    .2671889
               _cons |   10.92142   4.854686     2.25   0.024     1.406409    20.43643
        -------------+----------------------------------------------------------------
             sigma_u |  7.6395037
             sigma_e |  14.881591
                 rho |  .20856704   (fraction of variance due to u_i)
        ------------------------------------------------------------------------------
        Instrumented:   KoreanAPR
        Instruments:    2011.year 2012.year 2013.year 2014.year 2015.year 2016.year
                        2017.year delta_female delta_export APR_WestEurope
        ------------------------------------------------------------------------------
        And for the missing within R square, STATA homepage has some explanation about this situation

        https://www.stata.com/support/faqs/s...least-squares/

        It says when estimating IV Regression, negative R square problem happens quite a lot.

        I thought this situation is also applied to my regression.

        Regard,
        Last edited by ByungHo Lee; 15 Oct 2020, 02:22.

        Comment


        • #5
          It would be useful to see the results of the first stage regression: add the option -first- to your command
          xtivreg delta_wage (KoreanAPR = APR_WestEurope) i.year delta_female delta_export if year > 2009, fe vce(robust) first

          Comment


          • #6
            Thanks for Comment Eric!

            As you recommended I attach the result of first stage regression

            Code:
            xtivreg delta_wage  (KoreanAPR = APR_WestEurope) i.year delta_female delta_export if year > 2009, fe vce(robust) first
            
            First-stage within regression
            
            Fixed-effects (within) regression               Number of obs      =       104
            Group variable: industry                        Number of groups   =        13
            
            R-sq:  within  = 0.1164                         Obs per group: min =         8
                   between = 0.2093                                        avg =       8.0
                   overall = 0.0378                                        max =         8
            
                                                            F(10,12)           =     44.61
            corr(u_i, Xb)  = -0.1774                        Prob > F           =    0.0000
            
                                            (Std. Err. adjusted for 13 clusters in industry)
            --------------------------------------------------------------------------------
                           |               Robust
                 KoreanAPR |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
            ---------------+----------------------------------------------------------------
                      year |
                     2011  |   .2614847   .5947672     0.44   0.668    -1.034402    1.557371
                     2012  |   .0050521   .2810461     0.02   0.986    -.6072947    .6173989
                     2013  |   .4649152   .7970448     0.58   0.570    -1.271696    2.201527
                     2014  |   .2827927    .327144     0.86   0.404    -.4299929    .9955783
                     2015  |   .8409223    .668725     1.26   0.232    -.6161044    2.297949
                     2016  |   1.643925   1.646634     1.00   0.338    -1.943782    5.231632
                     2017  |  -.1701436   .5007379    -0.34   0.740    -1.261158    .9208705
                           |
              delta_female |  -.1625432    .222538    -0.73   0.479    -.6474119    .3223255
              delta_export |    .004714   .0148685     0.32   0.757    -.0276816    .0371097
            APR_WestEurope |   .7621269    .127648     5.97   0.000     .4840058    1.040248
                     _cons |   .2110526   .6020859     0.35   0.732     -1.10078    1.522885
            ---------------+----------------------------------------------------------------
                   sigma_u |  1.2445785
                   sigma_e |  1.7898049
                       rho |  .32593703   (fraction of variance due to u_i)
            --------------------------------------------------------------------------------
            F test that all u_i=0: F(12, 12) = .                         Prob > F =      .
            
            Fixed-effects (within) IV regression            Number of obs     =        104
            Group variable: industry                        Number of groups  =         13
            
            R-sq:                                           Obs per group:
                 within  =      .                                         min =          8
                 between = 0.0147                                         avg =        8.0
                 overall = 0.0082                                         max =          8
            
            
                                                            Wald chi2(10)     =    1068.04
            corr(u_i, Xb)  = -0.5174                        Prob > chi2       =     0.0000
            
                                          (Std. Err. adjusted for 13 clusters in industry)
            ------------------------------------------------------------------------------
                         |               Robust
              delta_wage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
            -------------+----------------------------------------------------------------
               KoreanAPR |  -5.924363   2.701318    -2.19   0.028    -11.21885   -.6298778
                         |
                    year |
                   2011  |  -7.621427   9.667232    -0.79   0.430    -26.56885      11.326
                   2012  |  -3.082289   2.174277    -1.42   0.156    -7.343794    1.179217
                   2013  |  -1.184164   4.823908    -0.25   0.806    -10.63885    8.270522
                   2014  |  -3.744533   2.922889    -1.28   0.200    -9.473289    1.984224
                   2015  |  -.0192173    3.90352    -0.00   0.996    -7.669976    7.631541
                   2016  |   5.073968   8.659806     0.59   0.558    -11.89894    22.04688
                   2017  |  -6.080655   2.033888    -2.99   0.003      -10.067   -2.094308
                         |
            delta_female |   1.427692   4.478519     0.32   0.750    -7.350044    10.20543
            delta_export |   .0199187   .1261606     0.16   0.875    -.2273514    .2671889
                   _cons |   10.92142   4.854686     2.25   0.024     1.406409    20.43643
            -------------+----------------------------------------------------------------
                 sigma_u |  7.6395037
                 sigma_e |  14.881591
                     rho |  .20856704   (fraction of variance due to u_i)
            ------------------------------------------------------------------------------
            Instrumented:   KoreanAPR
            Instruments:    2011.year 2012.year 2013.year 2014.year 2015.year 2016.year
                            2017.year delta_female delta_export APR_WestEurope
            ------------------------------------------------------------------------------
            
            .
            Although there seems to be some correlation between iv and residual, the correlation is not that high (-0.17)

            Best Regard,

            Comment


            • #7
              For the moment I have no explanation for the high Wald statistic. But there is another problem with your estimation. You only have 13 groups (industries). This is much too small for the cluster option.

              Comment


              • #8
                When I deal with endogeneity issue in terms of corporate governance and firm performance in 2SLS model using xtivreg command. (xtivreg y xn (x2 x3 x4 x5 =z1 z2 z3 z4). endog(x2 x3 x4 x5)
                I have 4 corporate governance variables and all corporate governance variables use the same instrument variable instead of each corporate governance variable with one specific instrument variable. How should I write the command?
                Thanks for help!

                Comment

                Working...
                X