This is the output of my Hausman test.. what does it mean by model fitted on these data does not meet asymptotic assumptions.
-
Login or Register
- Log in with
. webuse nlswork, clear (National Longitudinal Survey. Young Women 14-26 years of age in 1968) . xtset idcode panel variable: idcode (unbalanced) . xtreg ln_w age ttl_exp tenure 2.race grade, fe note: 2.race omitted because of collinearity note: grade omitted because of collinearity Fixed-effects (within) regression Number of obs = 28,099 Group variable: idcode Number of groups = 4,697 R-sq: Obs per group: within = 0.1443 min = 1 between = 0.2745 avg = 6.0 overall = 0.1924 max = 15 F(3,23399) = 1315.26 corr(u_i, Xb) = 0.1651 Prob > F = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0030427 .0008644 -3.52 0.000 -.0047369 -.0013484 ttl_exp | .029036 .0014505 20.02 0.000 .026193 .031879 tenure | .0116574 .0009249 12.60 0.000 .0098444 .0134704 | race | black | 0 (omitted) grade | 0 (omitted) _cons | 1.547951 .0181798 85.15 0.000 1.512317 1.583584 -------------+---------------------------------------------------------------- sigma_u | .3751722 sigma_e | .29556813 rho | .61703248 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(4696, 23399) = 7.64 Prob > F = 0.0000 . qui for var age ttl_exp tenure: egen meanX = mean(X), by(idcode) . xtreg ln_w age ttl_exp tenure mean* 2.race grade, re Random-effects GLS regression Number of obs = 28,099 Group variable: idcode Number of groups = 4,697 R-sq: Obs per group: within = 0.1443 min = 1 between = 0.4329 avg = 6.0 overall = 0.3250 max = 15 Wald chi2(8) = 7538.32 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0030268 .0008614 -3.51 0.000 -.0047152 -.0013385 ttl_exp | .0290337 .0014457 20.08 0.000 .0262003 .0318672 tenure | .0116424 .0009222 12.62 0.000 .0098349 .01345 meanage | -.0026319 .00142 -1.85 0.064 -.0054151 .0001513 meanttl_exp | -.0008391 .0025701 -0.33 0.744 -.0058764 .0041982 meantenure | .0165731 .0024676 6.72 0.000 .0117366 .0214095 | race | black | -.062727 .0103071 -6.09 0.000 -.0829286 -.0425254 grade | .0701835 .0020152 34.83 0.000 .0662339 .0741332 _cons | .709563 .0346377 20.49 0.000 .6416744 .7774516 -------------+---------------------------------------------------------------- sigma_u | .27539065 sigma_e | .29556813 rho | .46470444 (fraction of variance due to u_i) ------------------------------------------------------------------------------
. reg ln_w age ttl_exp tenure mean* 2.race grade, noheader ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.002911 .0011444 -2.54 0.011 -.0051542 -.0006679 ttl_exp | .028964 .001921 15.08 0.000 .0251989 .0327292 tenure | .0115805 .0012274 9.44 0.000 .0091748 .0139861 meanage | -.0022723 .0013232 -1.72 0.086 -.0048658 .0003212 meanttl_exp | -.0023782 .0022615 -1.05 0.293 -.0068108 .0020545 meantenure | .0171518 .0017178 9.98 0.000 .0137848 .0205188 | race | black | -.0806084 .0052841 -15.25 0.000 -.0909655 -.0702513 grade | .0708902 .0011003 64.43 0.000 .0687336 .0730468 _cons | .7061531 .0197196 35.81 0.000 .6675017 .7448045 ------------------------------------------------------------------------------
webuse nlswork xtset idcode xtreg ln_w age ttl_exp tenure 2.race grade, fe gen s = (ln_wage != .) & (age != .) & (ttl_exp != .) & (tenure != .) & (race != .) & (grade != .) egen agebar = mean(age) if s, by(idcode) egen ttl_expbar = mean(ttl_exp) if s, by(idcode) egen tenurebar = mean(tenure) if s, by(idcode) egen racebar = mean(race) if s, by(idcode) egen gradebar = mean(grade) if s, by(idcode) xtreg ln_wage age ttl_exp tenure 2.race grade agebar ttl_expbar tenurebar racebar gradebar, re
egen racebar = mean(race) if s, by(idcode)
egen racebar = mean(2.race) if s, by(idcode)
log using CRE_unbalanced_panel.log, replace webuse nlswork keep if (year == 68) | (year == 69) | (year ==70) | (year == 71) tab year, gen(year) xtset idcode xtreg ln_w age ttl_exp tenure 2.race grade year2-year4, fe gen s = (ln_wage != .) & (age != .) & (ttl_exp != .) & (tenure != .) & (race != .) & (grade != .) egen agebar = mean(age) if s, by(idcode) egen ttl_expbar = mean(ttl_exp) if s, by(idcode) egen tenurebar = mean(tenure) if s, by(idcode) egen year1bar = mean(year1) if s, by (idcode) egen year2bar = mean(year2) if s, by (idcode) egen year3bar = mean(year3) if s, by (idcode) egen year4bar = mean(year4) if s, by (idcode) xtreg ln_wage age ttl_exp tenure 2.race grade year2-year4 agebar ttl_expbar tenurebar year2bar year3bar year4bar, re clear log close
webuse nlswork xtset idcode xtreg ln_w age ttl_exp tenure 2.race grade, fe r Fixed-effects (within) regression Number of obs = 28,099 Group variable: idcode Number of groups = 4,697 R-sq: Obs per group: within = 0.1443 min = 1 between = 0.2745 avg = 6.0 overall = 0.1924 max = 15 F(3,4696) = 544.06 corr(u_i, Xb) = 0.1651 Prob > F = 0.0000 (Std. Err. adjusted for 4,697 clusters in idcode) ------------------------------------------------------------------------------ | Robust ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -0.003 0.001 -2.35 0.019 -0.006 -0.001 ttl_exp | 0.029 0.002 12.72 0.000 0.025 0.034 tenure | 0.012 0.001 7.93 0.000 0.009 0.015 | race | black | 0.000 (omitted) grade | 0.000 (omitted) _cons | 1.548 0.027 56.78 0.000 1.494 1.601 -------------+---------------------------------------------------------------- sigma_u | .3751722 sigma_e | .29556813 rho | .61703248 (fraction of variance due to u_i) ------------------------------------------------------------------------------ egen agebar = mean(age) , by(idcode) egen ttl_expbar = mean(ttl_exp) , by(idcode) egen tenurebar = mean(tenure) , by(idcode) egen racebar = mean(race) , by(idcode) egen gradebar = mean(grade) , by(idcode) xtreg ln_wage age ttl_exp tenure 2.race grade agebar ttl_expbar tenurebar racebar gradebar if e(sample), re r Random-effects GLS regression Number of obs = 28,099 Group variable: idcode Number of groups = 4,697 R-sq: Obs per group: within = 0.1443 min = 1 between = 0.4339 avg = 6.0 overall = 0.3252 max = 15 Wald chi2(9) = 4529.55 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 4,697 clusters in idcode) ------------------------------------------------------------------------------ | Robust ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -0.003 0.001 -2.34 0.019 -0.006 -0.000 ttl_exp | 0.029 0.002 12.72 0.000 0.025 0.034 tenure | 0.012 0.001 7.92 0.000 0.009 0.015 | race | black | -0.114 0.025 -4.50 0.000 -0.163 -0.064 grade | 0.070 0.002 31.31 0.000 0.066 0.075 agebar | -0.003 0.002 -1.57 0.116 -0.006 0.001 ttl_expbar | -0.001 0.003 -0.28 0.777 -0.007 0.005 tenurebar | 0.017 0.003 6.12 0.000 0.011 0.022 racebar | 0.053 0.024 2.22 0.027 0.006 0.099 gradebar | 0.000 (omitted) _cons | 0.655 0.044 14.86 0.000 0.569 0.742 -------------+---------------------------------------------------------------- sigma_u | .27510497 sigma_e | .29556813 rho | .4641881 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Comment