Hi All,
I have a dataset with more than 10 variables of more than 10 years in wide shape. I'm trying to reshape the dataset from wide to long, with the new variable (j) being Year, and other columns being the variable names, which are Apple, Orange, Cherry, ..., Dog, Cat, Penguin, ...I tried it with the following code:
, which does not work. It changes the dataset to completely long-shaped, with year-variable pairs in one column instead of putting the different variable names as different columns.
I'm wondering how can I reshape only the "Year" part of this dataset from wide to long, and let the variable names remain in different columns?
The columns names that I wish should look like
Below shows the data I use and the results I got:
The data I use:
The results I got:
Many thanks!
Craig
I have a dataset with more than 10 variables of more than 10 years in wide shape. I'm trying to reshape the dataset from wide to long, with the new variable (j) being Year, and other columns being the variable names, which are Apple, Orange, Cherry, ..., Dog, Cat, Penguin, ...I tried it with the following code:
Code:
reshape long Y, i(CountryCode) j(Year) string
I'm wondering how can I reshape only the "Year" part of this dataset from wide to long, and let the variable names remain in different columns?
The columns names that I wish should look like
Code:
CountryCode Country Year Apple Orange Cherry ... Dog Cat Penguin ...
The data I use:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str3 CountryCode str22 Country byte(Y2000Apple Y2001Apple Y2002Apple Y2003Apple Y2004Apple Y2005Apple Y2006Apple Y2007Apple Y2000Dog Y2001Dog Y2002Dog Y2003Dog Y2004Dog Y2005Dog Y2006Dog Y2007Dog) "AFG" "Afghanistan" 55 24 47 32 54 21 32 33 52 11 54 2 28 47 26 48 "ALB" "Albania" 48 14 60 40 33 15 34 10 8 38 12 46 42 55 24 44 "DZA" "Algeria" 23 63 59 65 62 19 39 30 36 36 16 60 53 36 17 39 "AGO" "Angola" 12 59 34 23 59 53 38 10 30 57 59 48 41 50 57 38 "ARG" "Argentina" 65 54 64 36 39 26 17 18 51 36 10 40 12 37 49 21 "ARM" "Armenia" 17 34 54 44 60 1 1 59 66 60 17 16 34 4 41 45 "AUS" "Australia" 44 16 9 32 38 34 16 39 5 44 27 60 19 44 9 25 "AUT" "Austria" 57 11 27 28 23 17 3 33 28 59 1 28 7 5 30 57 "AZE" "Azerbaijan" 66 36 5 29 34 1 24 57 11 16 53 44 32 15 17 12 "BGD" "Bangladesh" 21 34 47 47 60 5 60 62 19 20 48 3 64 7 35 2 "BLR" "Belarus" 30 61 25 51 52 15 57 10 28 51 4 26 42 18 38 2 "BEL" "Belgium" 9 43 27 53 6 66 59 32 15 4 42 42 55 59 12 65 "BOL" "Bolivia" 5 28 62 54 25 41 32 25 24 35 3 4 14 54 26 11 "BIH" "Bosnia and Herzegovina" 9 39 6 48 60 64 31 55 3 17 10 25 51 44 26 25 "BWA" "Botswana" 60 26 65 50 38 47 5 31 24 55 50 31 63 45 42 43 "BRA" "Brazil" 25 3 32 59 46 55 51 13 5 14 8 30 1 55 47 60 "BGR" "Bulgaria" 42 10 24 17 37 34 26 30 25 32 39 46 8 31 29 60 "BFA" "Burkina Faso" 41 6 18 2 29 6 63 53 7 20 57 59 66 50 36 2 "KHM" "Cambodia" 33 39 51 58 65 54 5 40 22 24 15 51 34 13 66 35 "CMR" "Cameroon" 18 19 12 60 14 9 61 2 53 20 38 34 6 17 31 43 "CAN" "Canada" 13 55 44 49 2 52 65 5 43 30 31 2 66 48 42 49 "CHL" "Chile" 14 12 48 34 61 44 17 49 28 57 36 47 6 62 61 63 "CHN" "China" 59 32 47 6 60 65 31 62 59 40 35 42 16 36 13 58 "HKG" "China, Hong Kong" 24 22 2 15 37 13 28 64 48 22 58 6 32 55 10 8 "TWN" "Chinese Taipei" 41 54 31 10 66 36 1 27 48 25 19 60 8 54 5 47 "COL" "Colombia" 6 60 22 56 60 41 19 2 36 59 16 33 26 64 22 15 "COD" "Congo, Dem. Rep." 45 18 51 63 24 10 26 27 24 8 57 31 16 55 5 43 "COG" "Congo, Rep." 30 39 46 63 4 32 19 51 24 20 43 6 50 44 22 11 "CRI" "Costa Rica" 2 3 65 15 13 5 9 61 8 46 60 47 6 27 39 17 "HRV" "Croatia" 52 60 30 42 19 57 11 15 32 49 44 66 35 41 46 47 "CUB" "Cuba" 3 12 55 20 13 1 23 64 38 24 54 9 4 43 35 64 "CYP" "Cyprus" 34 12 15 38 11 31 46 3 37 63 66 30 63 46 13 24 "CZE" "Czech Republic" 62 16 48 26 62 59 50 11 10 48 33 51 28 30 2 55 "DNK" "Denmark" 60 20 43 63 16 40 58 40 32 47 54 26 25 27 66 4 "ECU" "Ecuador" 27 58 26 59 20 11 50 62 17 57 49 48 19 50 7 54 "EGY" "Egypt, Arab Rep." 17 40 54 22 3 8 39 42 66 5 63 43 60 36 44 28 "EST" "Estonia" 40 15 4 8 8 52 42 61 38 58 36 24 14 14 24 16 "SWZ" "Eswatini" 44 46 24 31 58 22 20 50 5 37 62 57 36 40 1 1 "ETH" "Ethiopia" 64 60 38 49 43 66 6 17 44 51 20 1 25 43 26 62 "FIN" "Finland" 34 18 2 31 11 50 55 19 58 58 54 23 23 39 27 34 "FRA" "France" 66 65 6 64 31 33 4 46 12 66 20 41 41 42 9 11 "GAB" "Gabon" 44 64 3 28 32 3 57 54 4 33 35 19 27 49 9 13 "GMB" "Gambia, The" 60 23 41 38 33 61 20 46 13 22 52 26 66 57 61 54 "GEO" "Georgia" 58 53 50 9 42 61 10 32 34 1 16 31 7 43 34 65 "DEU" "Germany" 66 3 28 39 41 19 33 14 11 52 2 52 16 21 23 63 "GHA" "Ghana" 19 62 13 3 36 59 13 19 61 21 41 59 1 58 1 11 "GRC" "Greece" 3 26 5 25 29 49 29 28 43 10 40 22 28 38 48 44 "HUN" "Hungary" 53 8 8 33 19 62 59 18 49 10 57 7 14 9 35 64 "ISL" "Iceland" 38 38 38 59 29 26 60 42 58 17 55 20 25 8 50 63 "IND" "India" 56 49 38 50 39 51 25 36 6 33 27 38 1 49 47 29 "IDN" "Indonesia" 61 43 49 43 66 39 60 57 37 14 59 11 41 66 24 4 "IRN" "Iran, Islamic Rep." 39 32 14 47 62 60 35 2 34 27 12 36 42 65 50 37 "IRQ" "Iraq" 41 28 65 23 29 44 44 61 30 17 2 27 41 14 39 25 "IRL" "Ireland" 40 10 41 23 58 2 2 2 53 45 27 57 52 56 38 8 "ISR" "Israel" 38 26 65 23 5 63 25 60 48 58 27 15 3 21 2 54 "ITA" "Italy" 13 4 21 27 59 22 27 56 19 23 21 12 7 52 52 4 "JPN" "Japan" 29 6 27 56 10 9 65 49 3 25 40 60 51 8 32 46 "JOR" "Jordan" 10 39 53 18 52 13 9 36 10 27 43 50 14 64 28 57 "KAZ" "Kazakhstan" 26 33 30 37 21 41 7 16 43 28 15 23 4 20 59 32 "KEN" "Kenya" 26 4 29 28 28 48 1 44 38 26 27 24 1 26 43 42 "KOR" "Korea, Rep." 2 16 63 21 28 2 7 43 51 21 13 35 21 16 9 31 "XKX" "Kosovo" 41 60 47 26 6 29 5 7 32 50 9 26 29 52 21 62 "KGZ" "Kyrgyz Republic" 21 22 66 8 4 53 24 7 15 57 46 55 34 36 27 24 "LAO" "Lao PDR" 35 34 54 27 43 36 59 52 47 24 18 31 49 34 54 3 "LVA" "Latvia" 45 11 52 26 50 47 44 3 43 39 42 34 19 39 17 23 "LIE" "Liechtenstein" 6 20 35 52 49 63 54 7 46 54 1 31 25 19 34 8 "LTU" "Lithuania" 57 63 13 61 2 12 39 61 64 37 29 49 25 52 48 54 "LUX" "Luxembourg" 64 33 16 40 54 64 55 4 2 45 6 9 17 46 6 59 "MDG" "Madagascar" 7 30 36 27 56 62 58 26 25 4 52 63 53 39 21 8 "MWI" "Malawi" 32 49 65 63 49 58 12 16 48 23 21 63 62 29 65 20 "MYS" "Malaysia" 10 54 7 17 30 1 21 28 46 20 30 5 48 60 55 59 "MLI" "Mali" 19 63 15 55 23 62 22 54 43 2 30 31 35 43 49 2 "MLT" "Malta" 14 58 31 37 54 63 17 65 59 36 62 34 24 57 50 61 "MRT" "Mauritania" 15 9 43 19 21 63 56 53 61 6 66 58 20 43 9 47 "MEX" "Mexico" 30 40 49 55 44 59 29 54 61 15 56 65 51 46 5 50 "MDA" "Moldova" 5 9 37 3 34 14 36 57 2 24 50 41 22 36 63 26 "MCO" "Monaco" 53 7 53 15 11 44 19 15 18 40 5 44 7 32 3 48 "MNG" "Mongolia" 5 28 18 28 50 11 14 55 17 62 42 13 35 66 11 64 "MNE" "Montenegro" 3 15 4 32 14 45 51 32 55 2 66 26 44 24 48 19 "MAR" "Morocco" 12 40 47 37 13 41 30 15 65 2 63 6 1 48 3 9 "MOZ" "Mozambique" 3 46 36 57 50 4 13 23 26 31 24 43 41 49 52 54 "MMR" "Myanmar" 19 27 28 57 23 54 57 5 55 25 23 58 8 14 35 15 "NAM" "Namibia" 17 8 60 8 36 63 33 16 26 62 59 3 60 53 55 50 "NLD" "Netherlands" 47 29 56 19 59 48 4 38 34 37 33 6 13 5 56 27 "NZL" "New Zealand" 42 57 43 34 17 34 65 8 27 41 46 24 8 47 54 2 "NIC" "Nicaragua" 42 31 45 62 26 40 24 21 29 43 47 7 57 59 43 62 "NGA" "Nigeria" 66 41 60 24 17 64 5 10 49 29 12 64 13 47 3 2 "MKD" "North Macedonia" 16 43 44 63 2 45 12 14 41 28 24 62 46 38 58 27 "NOR" "Norway" 56 35 19 13 4 43 3 42 30 65 8 12 7 48 16 29 "PAK" "Pakistan" 60 57 44 58 23 45 65 39 46 50 63 64 3 57 26 61 "PRY" "Paraguay" 59 20 65 54 31 5 31 3 17 58 26 49 27 21 57 53 "PER" "Peru" 54 12 55 57 29 8 18 6 48 38 31 20 51 46 20 52 "POL" "Poland" 64 45 17 23 20 52 36 3 38 51 53 20 43 28 8 25 "PRT" "Portugal" 45 23 45 59 32 31 9 16 32 55 52 1 19 35 29 12 "PRI" "Puerto Rico" 6 35 28 62 5 29 21 17 59 45 20 46 42 66 12 55 "ROU" "Romania" 25 26 47 55 12 66 31 15 8 4 35 62 53 4 11 31 "RUS" "Russian Federation" 48 17 10 46 53 65 29 32 52 35 46 3 25 16 37 56 "SAU" "Saudi Arabia" 11 45 9 8 41 17 54 60 60 54 23 33 16 14 35 34 "SEN" "Senegal" 8 62 63 9 19 2 58 23 44 52 43 45 13 30 24 40 "SRB" "Serbia" 57 37 1 61 46 50 48 52 45 20 29 55 20 62 33 40 end
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str3 CountryCode str9 Year str22 Country byte Y "AFG" "2000Apple" "Afghanistan" 55 "AFG" "2000Dog" "Afghanistan" 52 "AFG" "2001Apple" "Afghanistan" 24 "AFG" "2001Dog" "Afghanistan" 11 "AFG" "2002Apple" "Afghanistan" 47 "AFG" "2002Dog" "Afghanistan" 54 "AFG" "2003Apple" "Afghanistan" 32 "AFG" "2003Dog" "Afghanistan" 2 "AFG" "2004Apple" "Afghanistan" 54 "AFG" "2004Dog" "Afghanistan" 28 "AFG" "2005Apple" "Afghanistan" 21 "AFG" "2005Dog" "Afghanistan" 47 "AFG" "2006Apple" "Afghanistan" 32 "AFG" "2006Dog" "Afghanistan" 26 "AFG" "2007Apple" "Afghanistan" 33 "AFG" "2007Dog" "Afghanistan" 48 "AGO" "2000Apple" "Angola" 12 "AGO" "2000Dog" "Angola" 30 "AGO" "2001Apple" "Angola" 59 "AGO" "2001Dog" "Angola" 57 "AGO" "2002Apple" "Angola" 34 "AGO" "2002Dog" "Angola" 59 "AGO" "2003Apple" "Angola" 23 "AGO" "2003Dog" "Angola" 48 "AGO" "2004Apple" "Angola" 59 "AGO" "2004Dog" "Angola" 41 "AGO" "2005Apple" "Angola" 53 "AGO" "2005Dog" "Angola" 50 "AGO" "2006Apple" "Angola" 38 "AGO" "2006Dog" "Angola" 57 "AGO" "2007Apple" "Angola" 10 "AGO" "2007Dog" "Angola" 38 "ALB" "2000Apple" "Albania" 48 "ALB" "2000Dog" "Albania" 8 "ALB" "2001Apple" "Albania" 14 "ALB" "2001Dog" "Albania" 38 "ALB" "2002Apple" "Albania" 60 "ALB" "2002Dog" "Albania" 12 "ALB" "2003Apple" "Albania" 40 "ALB" "2003Dog" "Albania" 46 "ALB" "2004Apple" "Albania" 33 "ALB" "2004Dog" "Albania" 42 "ALB" "2005Apple" "Albania" 15 "ALB" "2005Dog" "Albania" 55 "ALB" "2006Apple" "Albania" 34 "ALB" "2006Dog" "Albania" 24 "ALB" "2007Apple" "Albania" 10 "ALB" "2007Dog" "Albania" 44 "ARG" "2000Apple" "Argentina" 65 "ARG" "2000Dog" "Argentina" 51 "ARG" "2001Apple" "Argentina" 54 "ARG" "2001Dog" "Argentina" 36 "ARG" "2002Apple" "Argentina" 64 "ARG" "2002Dog" "Argentina" 10 "ARG" "2003Apple" "Argentina" 36 "ARG" "2003Dog" "Argentina" 40 "ARG" "2004Apple" "Argentina" 39 "ARG" "2004Dog" "Argentina" 12 "ARG" "2005Apple" "Argentina" 26 "ARG" "2005Dog" "Argentina" 37 "ARG" "2006Apple" "Argentina" 17 "ARG" "2006Dog" "Argentina" 49 "ARG" "2007Apple" "Argentina" 18 "ARG" "2007Dog" "Argentina" 21 "ARM" "2000Apple" "Armenia" 17 "ARM" "2000Dog" "Armenia" 66 "ARM" "2001Apple" "Armenia" 34 "ARM" "2001Dog" "Armenia" 60 "ARM" "2002Apple" "Armenia" 54 "ARM" "2002Dog" "Armenia" 17 "ARM" "2003Apple" "Armenia" 44 "ARM" "2003Dog" "Armenia" 16 "ARM" "2004Apple" "Armenia" 60 "ARM" "2004Dog" "Armenia" 34 "ARM" "2005Apple" "Armenia" 1 "ARM" "2005Dog" "Armenia" 4 "ARM" "2006Apple" "Armenia" 1 "ARM" "2006Dog" "Armenia" 41 "ARM" "2007Apple" "Armenia" 59 "ARM" "2007Dog" "Armenia" 45 "AUS" "2000Apple" "Australia" 44 "AUS" "2000Dog" "Australia" 5 "AUS" "2001Apple" "Australia" 16 "AUS" "2001Dog" "Australia" 44 "AUS" "2002Apple" "Australia" 9 "AUS" "2002Dog" "Australia" 27 "AUS" "2003Apple" "Australia" 32 "AUS" "2003Dog" "Australia" 60 "AUS" "2004Apple" "Australia" 38 "AUS" "2004Dog" "Australia" 19 "AUS" "2005Apple" "Australia" 34 "AUS" "2005Dog" "Australia" 44 "AUS" "2006Apple" "Australia" 16 "AUS" "2006Dog" "Australia" 9 "AUS" "2007Apple" "Australia" 39 "AUS" "2007Dog" "Australia" 25 "AUT" "2000Apple" "Austria" 57 "AUT" "2000Dog" "Austria" 28 "AUT" "2001Apple" "Austria" 11 "AUT" "2001Dog" "Austria" 59 end
Craig
Comment