Hi Tom,
I tried running the regression again, and these were the results:
The fta_hmr is a time-invariant dummy, and I think that might be because it is omitted.
Kind regards,
Ruken
I tried running the regression again, and these were the results:
Code:
. ppmlhdfe export loggdpi loggdpj logdist contig comlang_off gatt_i gatt_j fta_hmr ebola_only_i ebola_only_j ebola_both, absorb(exp_id imp_id) warning: dependent variable takes very low values after standardizing (3.5204e-09) note: 4 variables omitted because of collinearity: gatt_i fta_hmr ebola_only_j ebola_both Iteration 1: deviance = 2.9429e+05 eps = . iters = 5 tol = 1.0e-04 min(eta) = > -5.37 P Iteration 2: deviance = 2.1559e+05 eps = 3.65e-01 iters = 3 tol = 1.0e-04 min(eta) = > -7.20 Iteration 3: deviance = 2.0040e+05 eps = 7.58e-02 iters = 3 tol = 1.0e-04 min(eta) = > -9.17 Iteration 4: deviance = 1.9787e+05 eps = 1.28e-02 iters = 3 tol = 1.0e-04 min(eta) = > -10.50 Iteration 5: deviance = 1.9749e+05 eps = 1.96e-03 iters = 3 tol = 1.0e-04 min(eta) = > -11.45 Iteration 6: deviance = 1.9739e+05 eps = 4.92e-04 iters = 3 tol = 1.0e-04 min(eta) = > -12.45 Iteration 7: deviance = 1.9736e+05 eps = 1.60e-04 iters = 2 tol = 1.0e-04 min(eta) = > -13.41 Iteration 8: deviance = 1.9735e+05 eps = 4.98e-05 iters = 2 tol = 1.0e-04 min(eta) = > -14.30 Iteration 9: deviance = 1.9735e+05 eps = 1.22e-05 iters = 2 tol = 1.0e-05 min(eta) = > -15.03 Iteration 10: deviance = 1.9735e+05 eps = 1.68e-06 iters = 2 tol = 1.0e-05 min(eta) = > -15.47 S Iteration 11: deviance = 1.9735e+05 eps = 7.18e-08 iters = 2 tol = 1.0e-06 min(eta) = > -15.59 S Iteration 12: deviance = 1.9735e+05 eps = 2.75e-10 iters = 2 tol = 1.0e-07 min(eta) = > -15.60 S O -------------------------------------------------------------------------------------------- > ---------------- (legend: p: exact partial-out s: exact solver h: step-halving o: epsilon below toleran > ce) Converged in 12 iterations and 32 HDFE sub-iterations (tol = 1.0e-08) HDFE PPML regression No. of obs = 2,318 Absorbing 2 HDFE groups Residual df = 2,285 Wald chi2(7) = 179.26 Deviance = 197345.334 Prob > chi2 = 0.0000 Log pseudolikelihood = -101651.8496 Pseudo R2 = 0.7111 ------------------------------------------------------------------------------ | Robust export | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- loggdpi | .0934371 .1455971 0.64 0.521 -.1919279 .3788022 loggdpj | 1.824241 .285273 6.39 0.000 1.265116 2.383366 logdist | -1.995096 .4898565 -4.07 0.000 -2.955197 -1.034995 contig | 1.557701 .6209295 2.51 0.012 .340702 2.774701 comlang_off | .353602 .122546 2.89 0.004 .1134162 .5937878 gatt_i | 0 (omitted) gatt_j | -.3391768 .4353503 -0.78 0.436 -1.192448 .5140941 fta_hmr | 0 (omitted) ebola_only_i | -.5931968 .2234592 -2.65 0.008 -1.031169 -.1552249 ebola_only_j | 0 (omitted) ebola_both | 0 (omitted) _cons | 9.832597 4.527212 2.17 0.030 .9594241 18.70577 ------------------------------------------------------------------------------ Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| exp_id | 6 0 6 | imp_id | 21 1 20 | -----------------------------------------------------+ . .
Kind regards,
Ruken
Comment