Hello everyone,
I was hoping someone could help me and tell me what is happening in my estimations. I am doing my final undergraduate thesis and I am really lost.
I am using the PPML estimation method with country-year fixed effects and in my project I am trying to estimate the effect of an epidemic on a country trade with other countries.
My model looks like this:
ppml export loggdpi loggdpj logdist contig comlang_off colony comcur gatt_i gatt_j fta_hmr ebola_only_i ebola_only_j ebola_both i_year* imp_time_fe* exp_time_fe*
where exp_time_fe and imp_time_fe are country-year fixed effects, and i_year are time dummies.
ebola_only_i is a dummy, which is given the value 1 if only origin country is infected with ebola, and ebola_only_j takes value 1 if only destination country is infected with ebola.
In my dataset I have 6 origin countries and 20 destination countries. And I have data for 19 years.
The results after I run my regression looks like this:
. ppml export loggdpi loggdpj logdist contig comlang_off colony comcur gatt_i gatt_j fta_hmr
> ebola_only_i ebola_only_j ebola_both i_year* imp_time_fe* exp_time_fe*
note: checking the existence of the estimates
Number of regressors excluded to ensure that the estimates exist: 24
Excluded regressors: ebola_only_j ebola_both imp_time_fe159 imp_time_fe165 imp_time_fe248 i
> mp_time_fe249 imp_time_fe250 imp_time_fe251 imp_time_fe253 imp_time_fe263 imp_time_fe362 i
> mp_time_fe363 imp_time_fe364 imp_time_fe365 imp_time_fe366 imp_time_fe367 imp_time_fe368 i
> mp_time_fe369 imp_time_fe370 imp_time_fe376 imp_time_fe377 imp_time_fe378 imp_time_fe379 i
> mp_time_fe380
Number of observations excluded: 88
note: i_year1 omitted because of collinearity
note: imp_time_fe39 omitted because of collinearity
note: imp_time_fe57 omitted because of collinearity
note: imp_time_fe89 omitted because of collinearity
note: imp_time_fe153 omitted because of collinearity
note: imp_time_fe156 omitted because of collinearity
note: imp_time_fe160 omitted because of collinearity
note: imp_time_fe167 omitted because of collinearity
note: imp_time_fe169 omitted because of collinearity
note: imp_time_fe182 omitted because of collinearity
note: imp_time_fe185 omitted because of collinearity
note: imp_time_fe237 omitted because of collinearity
......(there are more omitted)
note: starting ppml estimation
note: export has noninteger values
Iteration 1: deviance = 173723.7
Iteration 2: deviance = 116180
Iteration 3: deviance = 103452.9
Iteration 4: deviance = 100695.1
Iteration 5: deviance = 100123.7
Iteration 6: deviance = 99994.54
Iteration 7: deviance = 99962.67
Iteration 8: deviance = 99953.85
Iteration 9: deviance = 99951.34
Iteration 10: deviance = 99950.61
Iteration 11: deviance = 99950.41
Iteration 12: deviance = 99950.36
Iteration 13: deviance = 99950.35
Iteration 14: deviance = 99950.34
Iteration 15: deviance = 99950.34
Iteration 16: deviance = 99950.34
Iteration 17: deviance = 99950.34
Number of parameters: 477
Number of observations: 2230
Pseudo log-likelihood: -52954.354
R-squared: .83270275
Option strict is: off
--------------------------------------------------------------------------------
| Robust
export | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
loggdpi | .9721215 .2282221 4.26 0.000 .5248144 1.419429
loggdpj | 1.062342 .0774175 13.72 0.000 .9106067 1.214078
logdist | -2.231952 .4825553 -4.63 0.000 -3.177743 -1.286161
contig | 1.129319 .6018557 1.88 0.061 -.0502963 2.308935
comlang_off | .2631047 .1177515 2.23 0.025 .032316 .4938934
colony | .7595913 .2081103 3.65 0.000 .3517025 1.16748
comcur | .6996079 .1893037 3.70 0.000 .3285794 1.070636
gatt_i | -1.037189 .6142318 -1.69 0.091 -2.241061 .1666836
gatt_j | -4.393113 .7459926 -5.89 0.000 -5.855232 -2.930995
fta_hmr | -.1689226 1.355726 -0.12 0.901 -2.826097 2.488252
ebola_only_i | .1778964 .5403693 0.33 0.742 -.881208 1.237001
i_year2 | -1.66684 1.271552 -1.31 0.190 -4.159036 .8253567
i_year3 | -3.285794 1.281308 -2.56 0.010 -5.797111 -.7744776
i_year4 | 1.886948 .8058063 2.34 0.019 .3075963 3.466299
i_year5 | 2.266468 1.313945 1.72 0.085 -.3088165 4.841752
i_year6 | 3.357903 1.303507 2.58 0.010 .8030753 5.91273
1) Can you tell me why my variables ebola_only_j ebola_both are omitted as I cannot see why myself?
2) Why are all the other variables omitted as well?
I hope anyone can tell me, as I am really confused about this. 😊
I was hoping someone could help me and tell me what is happening in my estimations. I am doing my final undergraduate thesis and I am really lost.
I am using the PPML estimation method with country-year fixed effects and in my project I am trying to estimate the effect of an epidemic on a country trade with other countries.
My model looks like this:
ppml export loggdpi loggdpj logdist contig comlang_off colony comcur gatt_i gatt_j fta_hmr ebola_only_i ebola_only_j ebola_both i_year* imp_time_fe* exp_time_fe*
where exp_time_fe and imp_time_fe are country-year fixed effects, and i_year are time dummies.
ebola_only_i is a dummy, which is given the value 1 if only origin country is infected with ebola, and ebola_only_j takes value 1 if only destination country is infected with ebola.
In my dataset I have 6 origin countries and 20 destination countries. And I have data for 19 years.
The results after I run my regression looks like this:
. ppml export loggdpi loggdpj logdist contig comlang_off colony comcur gatt_i gatt_j fta_hmr
> ebola_only_i ebola_only_j ebola_both i_year* imp_time_fe* exp_time_fe*
note: checking the existence of the estimates
Number of regressors excluded to ensure that the estimates exist: 24
Excluded regressors: ebola_only_j ebola_both imp_time_fe159 imp_time_fe165 imp_time_fe248 i
> mp_time_fe249 imp_time_fe250 imp_time_fe251 imp_time_fe253 imp_time_fe263 imp_time_fe362 i
> mp_time_fe363 imp_time_fe364 imp_time_fe365 imp_time_fe366 imp_time_fe367 imp_time_fe368 i
> mp_time_fe369 imp_time_fe370 imp_time_fe376 imp_time_fe377 imp_time_fe378 imp_time_fe379 i
> mp_time_fe380
Number of observations excluded: 88
note: i_year1 omitted because of collinearity
note: imp_time_fe39 omitted because of collinearity
note: imp_time_fe57 omitted because of collinearity
note: imp_time_fe89 omitted because of collinearity
note: imp_time_fe153 omitted because of collinearity
note: imp_time_fe156 omitted because of collinearity
note: imp_time_fe160 omitted because of collinearity
note: imp_time_fe167 omitted because of collinearity
note: imp_time_fe169 omitted because of collinearity
note: imp_time_fe182 omitted because of collinearity
note: imp_time_fe185 omitted because of collinearity
note: imp_time_fe237 omitted because of collinearity
......(there are more omitted)
note: starting ppml estimation
note: export has noninteger values
Iteration 1: deviance = 173723.7
Iteration 2: deviance = 116180
Iteration 3: deviance = 103452.9
Iteration 4: deviance = 100695.1
Iteration 5: deviance = 100123.7
Iteration 6: deviance = 99994.54
Iteration 7: deviance = 99962.67
Iteration 8: deviance = 99953.85
Iteration 9: deviance = 99951.34
Iteration 10: deviance = 99950.61
Iteration 11: deviance = 99950.41
Iteration 12: deviance = 99950.36
Iteration 13: deviance = 99950.35
Iteration 14: deviance = 99950.34
Iteration 15: deviance = 99950.34
Iteration 16: deviance = 99950.34
Iteration 17: deviance = 99950.34
Number of parameters: 477
Number of observations: 2230
Pseudo log-likelihood: -52954.354
R-squared: .83270275
Option strict is: off
--------------------------------------------------------------------------------
| Robust
export | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
loggdpi | .9721215 .2282221 4.26 0.000 .5248144 1.419429
loggdpj | 1.062342 .0774175 13.72 0.000 .9106067 1.214078
logdist | -2.231952 .4825553 -4.63 0.000 -3.177743 -1.286161
contig | 1.129319 .6018557 1.88 0.061 -.0502963 2.308935
comlang_off | .2631047 .1177515 2.23 0.025 .032316 .4938934
colony | .7595913 .2081103 3.65 0.000 .3517025 1.16748
comcur | .6996079 .1893037 3.70 0.000 .3285794 1.070636
gatt_i | -1.037189 .6142318 -1.69 0.091 -2.241061 .1666836
gatt_j | -4.393113 .7459926 -5.89 0.000 -5.855232 -2.930995
fta_hmr | -.1689226 1.355726 -0.12 0.901 -2.826097 2.488252
ebola_only_i | .1778964 .5403693 0.33 0.742 -.881208 1.237001
i_year2 | -1.66684 1.271552 -1.31 0.190 -4.159036 .8253567
i_year3 | -3.285794 1.281308 -2.56 0.010 -5.797111 -.7744776
i_year4 | 1.886948 .8058063 2.34 0.019 .3075963 3.466299
i_year5 | 2.266468 1.313945 1.72 0.085 -.3088165 4.841752
i_year6 | 3.357903 1.303507 2.58 0.010 .8030753 5.91273
1) Can you tell me why my variables ebola_only_j ebola_both are omitted as I cannot see why myself?
2) Why are all the other variables omitted as well?
I hope anyone can tell me, as I am really confused about this. 😊
Comment