Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Principal factor (factor, pf): What if the proportion of variance accounted for by the factors is greater than 1.00 (greater than 100%)?

    Hello,
    I ran factor analysis(factor, pf) in Stata to develop factor scores for my latent variables. However, after orthogonal varimax rotation, the proportion of variance accounted for by the factors is greater than 1.00 (100%).

    Is this problematic? I think this is happening because I do not specify the option "normalize." Normalize places an equal weight on all rows of the matrix to be rotated--maybe I should have done this? However, I have some indicator variables that have high uniqueness and the normalize option would weight these items equally with other items that had lower uniqueness, which seems like the wrong move. Output is included below:

    factormat r, n(140) mineigen(1) sds(stdev) means(mean) factors(1)
    (obs=140)

    Factor analysis/correlation Number of obs = 140
    Method: principal factors Retained factors = 1
    Rotation: (unrotated) Number of params = 3

    --------------------------------------------------------------------------
    Factor | Eigenvalue Difference Proportion Cumulative
    -------------+------------------------------------------------------------
    Factor1 | 1.67735 1.74060 1.1655 1.1655
    Factor2 | -0.06324 0.11172 -0.0439 1.1216
    Factor3 | -0.17497 . -0.1216 1.0000
    --------------------------------------------------------------------------
    LR test: independent vs. saturated: chi2(3) = 157.62 Prob>chi2 = 0.0000

    Factor loadings (pattern matrix) and unique variances

    ---------------------------------------
    Variable | Factor1 | Uniqueness
    -------------+----------+--------------
    Q3 | 0.5942 | 0.6469
    Q5 | 0.8293 | 0.3123
    Q7 | 0.7979 | 0.3634
    ---------------------------------------

    .
    . do "/var/folders/kx/2rhtmrz11ml9xqnpxzcw50h80000gn/T//SD01864.000000"

    . rotate

    Factor analysis/correlation Number of obs = 140
    Method: principal factors Retained factors = 1
    Rotation: orthogonal varimax (Kaiser off) Number of params = 3

    --------------------------------------------------------------------------
    Factor | Variance Difference Proportion Cumulative
    -------------+------------------------------------------------------------
    Factor1 | 1.67735 . 1.1655 1.1655
    --------------------------------------------------------------------------
    LR test: independent vs. saturated: chi2(3) = 157.62 Prob>chi2 = 0.0000

    Rotated factor loadings (pattern matrix) and unique variances

    ---------------------------------------
    Variable | Factor1 | Uniqueness
    -------------+----------+--------------
    Q3 | 0.5942 | 0.6469
    Q5 | 0.8293 | 0.3123
    Q7 | 0.7979 | 0.3634
    ---------------------------------------

    Factor rotation matrix

    -----------------------
    | Factor1
    -------------+---------
    Factor1 | 1.0000
    -----------------------

    . predict QUICKTREATX
    (regression scoring assumed)

    Scoring coefficients (method = regression; based on varimax rotated factors)

    ------------------------
    Variable | Factor1
    -------------+----------
    Q3 | 0.17032
    Q5 | 0.46105
    Q7 | 0.37630
    ------------------------


    . label variable QUICKTREATX "standardized Factor score of Q3, Q5, Q7 - getting treatment quickly"

    . summarize QUICKTREATX

    Variable | Obs Mean Std. Dev. Min Max
    -------------+---------------------------------------------------------
    QUICKTREATX | 140 .0230575 .8292956 -1.990456 1.034425

    . alpha Q3 Q5 Q7, std item detail

    Test scale = mean(standardized items)

    average
    item-test item-rest interitem
    Item | Obs Sign correlation correlation correlation alpha
    -------------+-----------------------------------------------------------------
    Q3 | 232 + 0.7790 0.3485 0.6558 0.7921
    Q5 | 371 + 0.8965 0.6316 0.3096 0.4728
    Q7 | 637 + 0.9236 0.5573 0.4190 0.5905
    -------------+-----------------------------------------------------------------
    Test scale | 0.4964 0.7473
    -------------------------------------------------------------------------------

    Interitem correlations (obs=pairwise, see below)

    Q3 Q5 Q7
    Q3 1.0000
    Q5 0.4190 1.0000
    Q7 0.3096 0.6558 1.0000

    Pairwise number of observations

    Q3 Q5 Q7
    Q3 232
    Q5 160 371
    Q7 193 304 637

    .
    end of do-file


    This also happens in the Stata example provided on see p. 15 (use link below).

    https://www.stata.com/manuals/mvfact...estimation.pdf
Working...
X