I am trying to estimate the relationship between real currency per capita (dependent variable) and direct tax to gdp ratio, gdp per capita, interest rate and inflation (independent variables). I have gathered quarterly data for the period 2001Q2 - 2018Q4.
After finding that my variables were stationary in the first difference and that there is presence of cointegration I estimated an ARDL error correction model as shown below. I have also shown the bounds test which shows a co integrating relationship I believe.
I am just wondering how I interpret the ARDL output and as I am looking for the relationship between real currency per capita (dependent variable) and the independent variables what would my equation be? I do not know whether I should differentiate between a short run specification and a long run specification and if I do that, why is there only one independent variable specified in the short run.
Thanks.
After finding that my variables were stationary in the first difference and that there is presence of cointegration I estimated an ARDL error correction model as shown below. I have also shown the bounds test which shows a co integrating relationship I believe.
Code:
ardl lnrealCURPC lngdppercapita interestrate infld directtaxratiod, lag(. . . . .) m > axlag(3 3 3 3 3) aic ec ARDL(2,0,0,0,3) regression Sample: 2002q3 - 2018q4 Number of obs = 66 R-squared = 0.3891 Adj R-squared = 0.2909 Log likelihood = 108.59474 Root MSE = 0.0507 --------------------------------------------------------------------------------- D.lnrealCURPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- ADJ | lnrealCURPC | L1. | -.6820688 .1177544 -5.79 0.000 -.9179592 -.4461783 ----------------+---------------------------------------------------------------- LR | lngdppercapita | 1.043669 .0353481 29.53 0.000 .972858 1.11448 interestrate | .0020574 .0098193 0.21 0.835 -.017613 .0217279 infld | -.6836962 .5265204 -1.30 0.199 -1.738443 .3710509 directtaxratiod | -33.38411 10.4536 -3.19 0.002 -54.32518 -12.44304 ----------------+---------------------------------------------------------------- SR | lnrealCURPC | LD. | .4115564 .1239233 3.32 0.002 .1633082 .6598047 | directtaxratiod | D1. | 8.462358 13.72885 0.62 0.540 -19.03983 35.96455 LD. | 11.06642 17.31682 0.64 0.525 -23.62333 45.75618 L2D. | 40.31898 17.03499 2.37 0.021 6.193793 74.44416 | _cons | -.9017556 .2910219 -3.10 0.003 -1.484742 -.3187687 ---------------------------------------------------------------------------------
Code:
estat ectest Pesaran, Shin, and Smith (2001) bounds test H0: no level relationship F = 6.804 Case 3 t = -5.792 Finite sample (4 variables, 66 observations, 4 short-run coefficients) Kripfganz and Schneider (2018) critical values and approximate p-values | 10% | 5% | 1% | p-value | I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1) ---+------------------+------------------+------------------+----------------- F | 2.531 3.695 | 3.016 4.297 | 4.113 5.637 | 0.000 0.002 t | -2.539 -3.639 | -2.865 -4.009 | -3.512 -4.728 | 0.000 0.001 do not reject H0 if both F and t are closer to zero than critical values for I(0) variables (if p-values > desired level for I(0) variables) reject H0 if both F and t are more extreme than critical values for I(1) variables (if p-values < desired level for I(1) variables)
Thanks.
Comment