Hello Statalist users,
I need help with exporting multiple xtbond2 estimations along with their post estimations results (AR1, AR2, Sargan, Hansen) into Word. publication quality level.
example of my multiple commands
and here is sample of the results i get with each regression
what is the best command to do so?
Thank you,
Sad
I need help with exporting multiple xtbond2 estimations along with their post estimations results (AR1, AR2, Sargan, Hansen) into Word. publication quality level.
example of my multiple commands
xtabond2 L(0/1).ZS3 c.OBSR##c.EA_w Size AssetG ROA LoanAsset LiqR DepFL l.GDPG l.T10Y3M y*,gmm(L.ZS3 OBSR LiqR,laglimits(1 1)) iv(l.GDPG l.T10Y3M y*,eq(level)) iv(l.GDPG l.T10Y3M,eq(diff)) twostep robust small
xtabond2 L(0/1).ZS3 c.OBSR##c.EA_w Size AssetG ROA LoanAsset LiqR LLPLR DepFL l.GDPG l.T10Y3M y*,gmm(L.ZS3 OBSR LiqR,laglimits(1 1)) iv(l.GDPG l.T10Y3M y*,eq(level)) iv(l.GDPG l.T10Y3M,eq(diff)) twostep robust small
xtabond2 L(0/1).ZS3 c.OBSR##c.EA_w Size AssetG ROA LoanAsset LiqR LLPAR DepFL l.GDPG l.T10Y3M y*,gmm(L.ZS3 OBSR LiqR,laglimits(1 1)) iv(l.GDPG l.T10Y3M y*,eq(level)) iv(l.GDPG l.T10Y3M,eq(diff)) twostep robust small
xtabond2 L(0/1).ZS3 c.OBSR##c.EA_w Size AssetG ROA LoanAsset LiqR LLPLR DepFL l.GDPG l.T10Y3M y*,gmm(L.ZS3 OBSR LiqR,laglimits(1 1)) iv(l.GDPG l.T10Y3M y*,eq(level)) iv(l.GDPG l.T10Y3M,eq(diff)) twostep robust small
xtabond2 L(0/1).ZS3 c.OBSR##c.EA_w Size AssetG ROA LoanAsset LiqR LLPAR DepFL l.GDPG l.T10Y3M y*,gmm(L.ZS3 OBSR LiqR,laglimits(1 1)) iv(l.GDPG l.T10Y3M y*,eq(level)) iv(l.GDPG l.T10Y3M,eq(diff)) twostep robust small
Code:
xtabond2 L(0/1).ZS3 c.OBSR##c.EA_w Size AssetG ROA LoanAsset LiqR DepFL l.GDPG l.T10Y3M y*,gmm(L.ZS3 OBSR LiqR,laglimits(1 1)) iv(l.GDPG l.T10Y3M y*,eq(level)) iv(l.GDPG l.T10Y3M,eq(diff)) twostep robust small Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: id Number of obs = 2766 Time variable : Year Number of groups = 336 Number of instruments = 61 Obs per group: min = 1 F(22, 335) = 11490.11 avg = 8.23 Prob > F = 0.000 max = 9 ------------------------------------------------------------------------------- | Corrected ZS3 | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------+---------------------------------------------------------------- ZS3 | L1. | .9606215 .0519257 18.50 0.000 .8584799 1.062763 | OBSR | .0166858 .0074719 2.23 0.026 .0019881 .0313835 EA_w | .0234135 .0110084 2.13 0.034 .0017592 .0450677 | c.OBSR#c.EA_w | -.0015945 .0006956 -2.29 0.023 -.0029629 -.0002261 | Size | .0499903 .0244027 2.05 0.041 .0019885 .0979921 AssetG | -.0023591 .0018319 -1.29 0.199 -.0059625 .0012443 ROA | .0040595 .0352507 0.12 0.908 -.065281 .0734001 LoanAsset | .0031209 .0038364 0.81 0.417 -.0044255 .0106672 LiqR | -.0025142 .0032188 -0.78 0.435 -.0088458 .0038174 DepFL | .0066999 .0037298 1.80 0.073 -.0006368 .0140366 | GDPG | L1. | -.4352625 .2448995 -1.78 0.076 -.916997 .0464721 | T10Y3M | L1. | -.019525 .0240011 -0.81 0.417 -.0667369 .027687 | yearD1 | 0 (omitted) yearD2 | 0 (omitted) yearD3 | -.4798001 .2566407 -1.87 0.062 -.9846305 .0250302 yearD4 | -.2549777 .1369852 -1.86 0.064 -.5244372 .0144819 yearD5 | -.4169946 .2253129 -1.85 0.065 -.860201 .0262117 yearD6 | -.1418621 .053773 -2.64 0.009 -.2476374 -.0360869 yearD7 | .0177436 .0359721 0.49 0.622 -.053016 .0885032 yearD8 | -.5419371 .3025044 -1.79 0.074 -1.136985 .0531103 yearD9 | -.1840684 .1093741 -1.68 0.093 -.3992151 .0310783 yearD10 | 0 (omitted) _cons | 0 (omitted) ------------------------------------------------------------------------------- Instruments for first differences equation Standard D.(L.GDPG L.T10Y3M) GMM-type (missing=0, separate instruments for each period unless collapsed) L.(L.ZS3 OBSR LiqR) Instruments for levels equation Standard L.GDPG L.T10Y3M yearD1 yearD2 yearD3 yearD4 yearD5 yearD6 yearD7 yearD8 yearD9 yearD10 _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.ZS3 OBSR LiqR) ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -5.60 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = 0.19 Pr > z = 0.848 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(38) = 210.17 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(38) = 44.19 Prob > chi2 = 0.227 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(12) = 16.51 Prob > chi2 = 0.169 Difference (null H = exogenous): chi2(26) = 27.68 Prob > chi2 = 0.374 iv(L.GDPG L.T10Y3M yearD1 yearD2 yearD3 yearD4 yearD5 yearD6 yearD7 yearD8 yearD9 yearD10, eq(level)) Hansen test excluding group: chi2(29) = 38.98 Prob > chi2 = 0.102 Difference (null H = exogenous): chi2(9) = 5.20 Prob > chi2 = 0.816 iv(L.GDPG L.T10Y3M, eq(diff)) Hansen test excluding group: chi2(36) = 42.25 Prob > chi2 = 0.219 Difference (null H = exogenous): chi2(2) = 1.94 Prob > chi2 = 0.380
Thank you,
Sad
Comment