Dear Statalist users,
I am using Stata 14 SE. My data is composed of two-wave observations at the district-level and districts are nested in provinces. Data example is below. I would like to see if the independent variables (X1 X2 X3) have indirect effects on Y via Z.
Given the multilevel nature of data I am using gsem and am trying to do mediation analysis.
I use the command:
Because "estat teffects" is not supported after gsem, I manually calculated the indirect effects:
In the mediation literature, there is an argument for using bootstrapped confidence intervals when calculating indirect effects (e.g. Preacher and Hayes 2004)
I saw guidelines about how to do that after sem :
But I cannot figure how to apply this to my nlcom results i.e. how to make a matrix after manually calculated indirect effects to run bootstrapped confidence intervals on the beta coefficients of the indirect effects.
I tried running the gsem with bootstrap prefix but after 3 hours it was still running. I read a bit about 'boottest' but I could not figure how to do use it for my purposes.
Any help with getting bootstrapped CIs for indirect effects after a two-level gsem model would be much appreciated.
I am using Stata 14 SE. My data is composed of two-wave observations at the district-level and districts are nested in provinces. Data example is below. I would like to see if the independent variables (X1 X2 X3) have indirect effects on Y via Z.
Given the multilevel nature of data I am using gsem and am trying to do mediation analysis.
I use the command:
Code:
gsem (Y<- X1 i.X2 X3 Z P[province] C[province>district_no]) /// (Z<-X1 i.X2 X3 P[province] C[province>district_no]), nocapslatent latent (P C)
Code:
nlcom _b[Z:X1]*_b[Y:Z] nlcom _b[Z:1.X2]*_b[Y:Z] nlcom _b[Z:2.X2]*_b[Y:Z] nlcom _b[Z:X3]*_b[Y:Z]
I saw guidelines about how to do that after sem :
Code:
mat bi = r(indirect) mat bd = r(direct) mat bt = r(total) return scalar indir = el(bi,1,3) return scalar direct = el(bd,1,3) return scalar total = el(bt,1,3)
I tried running the gsem with bootstrap prefix but after 3 hours it was still running. I read a bit about 'boottest' but I could not figure how to do use it for my purposes.
Any help with getting bootstrapped CIs for indirect effects after a two-level gsem model would be much appreciated.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int district_no byte(wave province) double (Y Z) float X1 byte X2 float X3 7 1 1 .23223635003739715 .869795996674554 0 0 0 4 1 1 .4701195219123506 .8039459375485475 0 0 0 8 1 1 .42910860429108605 .8222902932232359 0 0 0 2 1 1 .25843545684528696 .8517262864682598 0 0 0 3 1 1 .2314806361495061 .8671302188663923 0 0 0 1 1 1 .5008916001877053 .8836196467457053 0 0 0 9 1 1 .4536984981126014 .8757469606429013 0 0 0 11 1 1 .36644963615473 .8615101724805369 0 0 0 15 1 1 .3377397403399747 .8314157170778479 0 0 0 6 1 1 .5529871977240398 .9015807301467821 0 0 0 10 1 1 .4836112708453134 .7833479404031551 0 0 0 5 1 1 .45914704629798625 .8386024120303737 0 0 0 13 1 1 .35363741339491916 .8177992041628406 0 0 0 14 1 1 .32956786802940646 .8485232696897375 0 0 0 12 1 1 .2582014753593243 .8491196205853588 0 0 0 8 2 1 .5013144023806029 .8456993069130976 13 1 6 2 2 1 .33096601673721704 .8558748788826122 13 2 6 5 2 1 .5308816595945309 .8622581288649511 13 0 6 3 2 1 .28064805600966664 .8749831214675643 13 2 6 12 2 1 .3228475641790513 .8528333602230218 13 2 6 7 2 1 .2716732739920712 .8649493081680801 13 0 6 15 2 1 .42843334243252795 .8406463605192804 13 1 6 9 2 1 .5270582609388699 .8802646998000965 13 0 6 1 2 1 .5701738334858188 .891889725917615 13 0 6 11 2 1 .4484892121448794 .8800895139308706 13 1 6 4 2 1 .5468765275197967 .825685903500473 13 0 6 6 2 1 .5972691441441441 .9105439383410197 13 0 6 10 2 1 .5462431001464458 .8043728423475259 13 1 6 13 2 1 .4731265652090156 .8134437035333794 13 0 6 14 2 1 .37584912406149446 .8606675244077803 13 0 6 16 1 2 .5449415852219232 .8457498530453939 0 2 0 17 1 2 .524244480400856 .7929118002416432 0 0 0 24 1 2 .5623674911660778 .8395382395382396 0 0 0 22 1 2 .7121102248005802 .7838338895068595 0 0 0 18 1 2 .5755950385517935 .8811443932411674 0 0 0 21 1 2 .685989894350023 .7928177975148384 0 0 0 20 1 2 .4849688681767829 .8204195205479452 0 2 0 23 1 2 .9071300179748353 .8856816985436041 0 0 0 19 1 2 .7091292483254775 .6773241515002459 0 0 0 23 2 2 .9593705293276109 .9326021581461171 2 0 2 24 2 2 .6620594333102972 .8542088516054382 2 2 2 20 2 2 .5811804708578187 .8416793893129771 2 0 2 21 2 2 .8277890608586036 .828457731311777 2 2 2 22 2 2 .8619329388560157 .872473077649726 2 0 2 17 2 2 .6770883478172743 .8163368642780467 2 0 2 19 2 2 .85121412803532 .7589862514493954 2 0 2 18 2 2 .6560495938435229 .9165220744168112 2 0 2 16 2 2 .641944955764613 .8683048852266039 2 0 2 42 1 3 .24974731232197003 .8973921874433282 0 0 0 29 1 3 .4544952285283777 .8783187717363644 0 0 0 27 1 3 .5145569620253164 .868237347294939 0 0 0 30 1 3 .5304798962386511 .9205705009276438 0 0 0 36 1 3 .5650262617035853 .9233479726279236 0 0 0 25 1 3 .5348067182412929 .9103541429696387 0 0 0 28 1 3 .6256125821524903 .8756493401735875 0 0 0 26 1 3 .4125722543352601 .8892910634048926 0 0 0 40 1 3 .569474921630094 .8865721434528774 0 0 0 38 1 3 .43885714285714283 .8626991565135895 0 0 0 31 1 3 .43370756482224004 .9102380952380953 0 0 0 35 1 3 .559327566508895 .8404325464855598 0 0 0 39 1 3 .5349692529496572 .8505993873465352 0 0 0 34 1 3 .4162415833503367 .8761123713139068 0 0 0 37 1 3 .6467490520994242 .9294468787705594 0 0 0 33 1 3 .4869785664899747 .778960223307746 0 0 0 32 1 3 .4417435328386157 .8575885377549252 0 0 0 41 1 3 .5593326906149139 .8820998278829604 0 0 0 33 2 3 .5746084480303749 .7624526498389209 2 0 0 27 2 3 .62026913372582 .8601643069393463 2 0 0 34 2 3 .47278770253427505 .8665964542741794 2 0 0 35 2 3 .660734327400994 .8594414893617022 2 0 0 38 2 3 .4796839729119639 .8629751290473956 2 0 0 36 2 3 .7066111111111111 .9333808336302102 2 0 0 26 2 3 .4892944388561575 .900830606594513 2 0 0 42 2 3 .30645011600928074 .9088443737344518 2 1 0 37 2 3 .7727925586485193 .9328652917946467 2 0 0 41 2 3 .6688803780964798 .8722279220266751 2 0 0 25 2 3 .6653963139734789 .915298976671581 2 1 0 40 2 3 .6965041965041965 .8881137465949106 2 0 0 39 2 3 .6348095224320963 .8626212058616248 2 0 0 31 2 3 .5171763437963087 .9005827090022595 2 0 0 30 2 3 .6460984702403908 .9102711397058824 2 0 0 32 2 3 .5016402405686168 .8635209235209235 2 1 0 28 2 3 .7158580413297394 .8784253184098804 2 0 0 29 2 3 .5412363492612542 .8783167145512929 2 0 0 52 1 68 .5795023847696735 .8339957901642929 0 0 0 55 1 68 .5809735921094495 .7684285375681441 0 0 0 57 1 5 .5786761791518034 .702775532201563 0 0 0 51 1 68 .640272373540856 .8042553191489362 0 0 0 54 1 68 .5541 .774018944519621 0 0 0 53 1 68 .6289149686802505 .869839519784393 0 0 0 56 1 68 .6004657351962741 .7849462365591398 0 0 0 56 2 68 .71238570241064 .7945223149023992 2 0 0 57 2 5 .6419597989949749 .6763807937829587 1 0 3 52 2 68 .7150396119644301 .8562599887634934 2 1 0 51 2 68 .761794723666474 .8159802560542958 2 0 0 55 2 68 .7036920659858602 .7909467023606717 2 0 0 54 2 68 .6571784550507955 .8054483541430193 2 1 0 53 2 68 .777793237790455 .8943317859760567 2 0 0 end
Comment