Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • deciding between xtgee and xtreg, re

    Hello,

    I have an unbalanced panel data set with N = 185 and T = 5. I have 8 dependent variables of which two do not change over time. Therefore, I think random effects is the one to use to tackle this problem. However, I am still struggling a lot at what command to use. I have been asking questions and have been strolling down the internet a lot, and many times it has been pointed out that for T < N xtreg, re is the way to go. However, I do not find an explanation of why this is the case. I have read the part of xtgee In the pdf manual, and here they state the following:" xtgee, fam(gauss) link(ident) corr(exch) is asymptotically equivalent to the weighted-GLS estimator provided by xtreg, re". However, when I run both models, both are very dissimilar. I have significant regressors for the xtgee, but not for the xtreg, re command.

    Could somebody please clarify this for me, as I want to understand what I am doing.

    Thank you very much,
    Timea De Wispelaere

  • #2
    Google "individual specific" "population average" together.

    Comment


    • #3
      Please follow the guidelines and post your Stata commands and the output. It would help me give an opinion.

      Comment


      • #4
        Hello, thank you for your answer. I am sorry I did provide you with any output. These are the regressions I performed:

        Code:
        . xtgee pctcarbonintensitychange L.firmsize L.profitability L.leverage age L.capitalintensity L
        > .CAPEX L.KZindex elektricitygenerator Carbonleakage i.twodigitsNACE i.Province_n publicfirm S
        > ME
        
        Iteration 1: tolerance = .02873975
        Iteration 2: tolerance = .00055776
        Iteration 3: tolerance = 9.029e-06
        Iteration 4: tolerance = 1.451e-07
        
        GEE population-averaged model                   Number of obs     =        864
        Group variable:               Companynum~r      Number of groups  =        183
        Link:                             identity      Obs per group:
        Family:                           Gaussian                    min =          1
        Correlation:                  exchangeable                    avg =        4.7
                                                                      max =          5
                                                        Wald chi2(48)     =     122.68
        Scale parameter:                  .0233528      Prob > chi2       =     0.0000
        
        ----------------------------------------------------------------------------------------------
            pctcarbonintensitychange |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -----------------------------+----------------------------------------------------------------
                            firmsize |
                                 L1. |  -.0110114   .0055086    -2.00   0.046    -.0218081   -.0002148
                                     |
                       profitability |
                                 L1. |  -.0652048   .1085569    -0.60   0.548    -.2779723    .1475627
                                     |
                            leverage |
                                 L1. |   .0427361   .0215191     1.99   0.047     .0005595    .0849127
                                     |
                                 age |  -.0003844   .0001927    -1.99   0.046    -.0007621   -6.59e-06
                                     |
                    capitalintensity |
                                 L1. |   .0142071   .0266912     0.53   0.595    -.0381067     .066521
                                     |
                               CAPEX |
                                 L1. |  -.0409272    .070088    -0.58   0.559    -.1782972    .0964428
                                     |
                             KZindex |
                                 L1. |  -.0032342   .0035533    -0.91   0.363    -.0101985    .0037301
                                     |
                elektricitygenerator |  -.2965176   .1057578    -2.80   0.005    -.5037991    -.089236
                       Carbonleakage |   .0227824   .0103768     2.20   0.028     .0024443    .0431205
                                     |
                       twodigitsNACE |
                                 10  |  -.0170488   .0253427    -0.67   0.501    -.0667196    .0326219
                                 11  |  -.0545278   .0362404    -1.50   0.132    -.1255576    .0165021
                                 13  |  -.0769276    .033449    -2.30   0.021    -.1424864   -.0113688
                                 16  |  -.0997589   .0433162    -2.30   0.021    -.1846571   -.0148606
                                 17  |  -.0363827   .0306086    -1.19   0.235    -.0963745    .0236091
                                 19  |   -.017968   .0326387    -0.55   0.582    -.0819386    .0460027
                                 20  |   -.035422    .024873    -1.42   0.154    -.0841721    .0133281
                                 21  |  -.1458477   .0361044    -4.04   0.000    -.2166111   -.0750843
                                 22  |  -.0230857   .0322135    -0.72   0.474     -.086223    .0400516
                                 23  |  -.0618224   .0243418    -2.54   0.011    -.1095315   -.0141132
                                 24  |   -.054857   .0274241    -2.00   0.045    -.1086072   -.0011068
                                 25  |   -.065376   .0449941    -1.45   0.146    -.1535627    .0228108
                                 27  |  -.1413144    .105282    -1.34   0.180    -.3476632    .0650345
                                 28  |  -.1101605    .047586    -2.31   0.021    -.2034273   -.0168936
                                 29  |  -.0786536   .0429498    -1.83   0.067    -.1628336    .0055264
                                 30  |  -.1357392    .054646    -2.48   0.013    -.2428434    -.028635
                                 35  |   .2916917   .1064745     2.74   0.006     .0830055     .500378
                                 42  |  -.0675854   .0324183    -2.08   0.037     -.131124   -.0040467
                                 46  |  -.0565031    .027916    -2.02   0.043    -.1112175   -.0017888
                                 47  |   .0099568   .0551535     0.18   0.857    -.0981421    .1180557
                                 49  |  -.0686854   .0459362    -1.50   0.135    -.1587187    .0213479
                                 52  |  -.0673122   .0374821    -1.80   0.073    -.1407757    .0061512
                                 61  |  -.1721765   .0837297    -2.06   0.040    -.3362838   -.0080692
                                 63  |  -.0261264   .0553437    -0.47   0.637    -.1345982    .0823453
                                 70  |  -.0579974   .0599777    -0.97   0.334    -.1755515    .0595567
                                 72  |  -.1225925   .0552375    -2.22   0.026    -.2308559    -.014329
                                 81  |  -.1404944   .0561836    -2.50   0.012    -.2506122   -.0303766
                                     |
                          Province_n |
        Brabant Wallon / Waals Br..  |   .0118277   .0228113     0.52   0.604    -.0328817    .0565371
                           Brussels  |   .0364452   .0160283     2.27   0.023     .0050304    .0678601
                      East-Flanders  |  -.0186906   .0140005    -1.33   0.182    -.0461311    .0087499
               Hainaut / Henegouwen  |   .0153574   .0151453     1.01   0.311    -.0143268    .0450416
                 Limburg / Limbourg  |  -.0137308   .0147966    -0.93   0.353    -.0427317      .01527
                       Liège / Luik  |   .0069992   .0197536     0.35   0.723    -.0317171    .0457154
                         Luxembourg  |   .0043567   .0277862     0.16   0.875    -.0501033    .0588167
                      Namur / Namen  |   -.014729    .054721    -0.27   0.788    -.1219803    .0925223
        Vlaams Brabant / Brabant ..  |  -.0305495   .0234302    -1.30   0.192    -.0764719     .015373
                      West-Flanders  |   .0141935   .0178888     0.79   0.428     -.020868     .049255
                                     |
                          publicfirm |   .0289798   .0271321     1.07   0.285    -.0241982    .0821578
                                 SME |  -.0381241   .0141018    -2.70   0.007    -.0657631    -.010485
                               _cons |   .2408525   .1106325     2.18   0.029     .0240169    .4576882
        ----------------------------------------------------------------------------------------------
        
        . xtreg pctcarbonintensitychange L.firmsize L.profitability L.leverage age L.capitalintensity L
        > .CAPEX L.KZindex elektricitygenerator Carbonleakage i.twodigitsNACE i.Province_n publicfirm S
        > ME, re
        
        Random-effects GLS regression                   Number of obs     =        864
        Group variable: Companynum~r                    Number of groups  =        183
        
        R-sq:                                           Obs per group:
             within  = 0.0000                                         min =          1
             between = 0.3258                                         avg =        4.7
             overall = 0.0720                                         max =          5
        
                                                        Wald chi2(48)     =      59.93
        corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.1159
        
        ----------------------------------------------------------------------------------------------
            pctcarbonintensitychange |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -----------------------------+----------------------------------------------------------------
                            firmsize |
                                 L1. |  -.0087808   .0079931    -1.10   0.272    -.0244471    .0068855
                                     |
                       profitability |
                                 L1. |  -.0688331   .1265621    -0.54   0.587    -.3168903     .179224
                                     |
                            leverage |
                                 L1. |   .0244818   .0288423     0.85   0.396    -.0320481    .0810117
                                     |
                                 age |   -.000399   .0002861    -1.39   0.163    -.0009597    .0001617
                                     |
                    capitalintensity |
                                 L1. |   .0166871   .0379886     0.44   0.660    -.0577691    .0911434
                                     |
                               CAPEX |
                                 L1. |   -.031154   .0799415    -0.39   0.697    -.1878365    .1255286
                                     |
                             KZindex |
                                 L1. |  -.0014344   .0040594    -0.35   0.724    -.0093907    .0065218
                                     |
                elektricitygenerator |  -.2962133   .1209977    -2.45   0.014    -.5333643   -.0590622
                       Carbonleakage |   .0244407   .0155893     1.57   0.117    -.0061139    .0549952
                                     |
                       twodigitsNACE |
                                 10  |  -.0198456    .037485    -0.53   0.597    -.0933149    .0536236
                                 11  |  -.0580764   .0534681    -1.09   0.277     -.162872    .0467191
                                 13  |  -.0779794   .0489724    -1.59   0.111    -.1739636    .0180047
                                 16  |  -.1042684   .0648187    -1.61   0.108    -.2313108     .022774
                                 17  |  -.0351081    .045549    -0.77   0.441    -.1243825    .0541663
                                 19  |  -.0188102   .0486132    -0.39   0.699    -.1140904      .07647
                                 20  |   -.035151   .0367532    -0.96   0.339    -.1071859    .0368839
                                 21  |  -.1499324   .0539534    -2.78   0.005    -.2556792   -.0441856
                                 22  |  -.0199669   .0482437    -0.41   0.679    -.1145228    .0745889
                                 23  |   -.062572   .0360905    -1.73   0.083    -.1333081    .0081641
                                 24  |  -.0538698   .0407726    -1.32   0.186    -.1337826     .026043
                                 25  |  -.0625568   .0676387    -0.92   0.355    -.1951261    .0700125
                                 27  |  -.1413433   .1207934    -1.17   0.242     -.378094    .0954075
                                 28  |  -.1204707   .0682325    -1.77   0.077    -.2542039    .0132624
                                 29  |  -.0838932   .0642725    -1.31   0.192    -.2098651    .0420786
                                 30  |  -.1360928   .0819857    -1.66   0.097    -.2967818    .0245961
                                 35  |   .2900476    .122596     2.37   0.018     .0497639    .5303314
                                 42  |  -.0625901   .0485432    -1.29   0.197    -.1577331    .0325528
                                 46  |  -.0533588   .0414742    -1.29   0.198    -.1346466    .0279291
                                 47  |   .0147112   .0826967     0.18   0.859    -.1473714    .1767938
                                 49  |  -.0628697   .0686873    -0.92   0.360    -.1974944    .0717549
                                 52  |  -.0686771   .0553526    -1.24   0.215    -.1771662     .039812
                                 61  |  -.1784293   .1056568    -1.69   0.091    -.3855129    .0286544
                                 63  |  -.0098283    .078951    -0.12   0.901    -.1645694    .1449128
                                 70  |  -.0488087   .0901599    -0.54   0.588    -.2255187    .1279014
                                 72  |  -.1259454   .0824177    -1.53   0.126    -.2874812    .0355903
                                 81  |  -.1354842   .0845476    -1.60   0.109    -.3011945    .0302261
                                     |
                          Province_n |
        Brabant Wallon / Waals Br..  |   .0074386   .0338765     0.22   0.826    -.0589582    .0738353
                           Brussels  |   .0384491    .024031     1.60   0.110    -.0086509     .085549
                      East-Flanders  |   -.020295   .0208019    -0.98   0.329    -.0610659     .020476
               Hainaut / Henegouwen  |   .0157239   .0224351     0.70   0.483    -.0282482     .059696
                 Limburg / Limbourg  |  -.0148268    .022197    -0.67   0.504     -.058332    .0286784
                       Liège / Luik  |   .0067555   .0294684     0.23   0.819    -.0510014    .0645125
                         Luxembourg  |   .0031601   .0410097     0.08   0.939    -.0772175    .0835377
                      Namur / Namen  |  -.0135276   .0819917    -0.16   0.869    -.1742284    .1471732
        Vlaams Brabant / Brabant ..  |   -.025455   .0351928    -0.72   0.469    -.0944316    .0435216
                      West-Flanders  |   .0215827   .0267154     0.81   0.419    -.0307784    .0739439
                                     |
                          publicfirm |   .0183022   .0401914     0.46   0.649    -.0604714    .0970759
                                 SME |  -.0343842   .0207943    -1.65   0.098    -.0751403    .0063719
                               _cons |   .2012123   .1609969     1.25   0.211    -.1143358    .5167605
        -----------------------------+----------------------------------------------------------------
                             sigma_u |   .0195396
                             sigma_e |  .16076216
                                 rho |  .01455777   (fraction of variance due to u_i)
        ----------------------------------------------------------------------------------------------
        many thanks!
        Timea

        Comment


        • #5
          As Joseph is alluding to, what you've done with xtgee is ordinary least squares (often called pooled OLS in econometrics) because the default in xtgee is to assume an uncorrelated structure (which they call independent). xtreg does generalized least squares because the default is random effects estimation. These are different estimators. In your case, the estimates are close because sigma_u is so small. This is not surprising because you have effectively already differenced your dependent variable and that removes much, if not all, of the serial correlation. Do you see the small estimate of rho? That means the estimated correlation due to u(i) is very small. You are almost, but not quite, doing pooled OLS.

          If you want comparability, use the "corr(exch)" option for xtgee. But, really, you should just be doing pooled OLS and clustering your standard errors. Or, try fixed effects.

          Comment


          • #6
            Thank you for your insights, Jeff!

            Comment

            Working...
            X