Hi.
I am currently looking to estimate a fixed effects regression - it looks at how natural disasters affect test scores.
I wish to include child fixed effects (engrade and gender) and household fixed effects headedu and hhsize.
As gender is likely to play a role in influencing the role of child labour, I feel it is important.
However - it drops out due to being time invariant.
Am I able to estimate the model without gender? Or is there a better way to incorporate its influence that won't cause it to drop out?
Also - I don't fully understand the xtset command. When I specify xtset panelid round - does this mean that round is being used as a fixed effect, and as such I could remove engrade from the model as a way of controlling for the role of the child's age in influencing test scores. Or - am I right in thinking i.engrade is necessary,
xtset panelid round
xtreg ppvt disaster worktime juntos disjunt foodsec i.engrade i.gender i.headedu i.hhsize, fe
note: 2.gender omitted because of collinearity
Fixed-effects (within) regression Number of obs = 5,056
Group variable: panelid Number of groups = 1,783
R-sq: Obs per group:
within = 0.7978 min = 1
between = 0.2545 avg = 2.8
overall = 0.5126 max = 3
F(48,3225) = 265.17
corr(u_i, Xb) = 0.0578 Prob > F = 0.0000
--------------------------------------------------------------------------------------------------------------------
ppvt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------------------------------------------+----------------------------------------------------------------
disaster | -.3327084 .4389233 -0.76 0.449 -1.193305 .5278886
worktime | .3705333 .1381362 2.68 0.007 .0996897 .6413768
juntos | -.8159844 .7564076 -1.08 0.281 -2.299073 .6671039
disjunt | .5679331 .5821971 0.98 0.329 -.5735806 1.709447
foodsec | -.2515621 .2981846 -0.84 0.399 -.8362126 .3330884
|
engrade |
grade 1 (Primary, Grade 1) | -31.74428 2.255193 -14.08 0.000 -36.16603 -27.32252
grade 2 (Primary, Grade 2) | -25.51156 1.907192 -13.38 0.000 -29.25099 -21.77213
grade 3 (Primary, Grade 3) | -17.99302 1.951363 -9.22 0.000 -21.81906 -14.16699
grade 4 (Primary, Grade 4) | -2.450614 2.149643 -1.14 0.254 -6.665418 1.76419
grade 5 (Primary, Grade 5) | -.0301754 1.966074 -0.02 0.988 -3.885057 3.824706
grade 6 (Primary, Grade 6) | 1.970767 1.893533 1.04 0.298 -1.741883 5.683417
grade 7 (Secondary, Year 1) | 6.933335 1.929764 3.59 0.000 3.149648 10.71702
grade 8 (Secondary, Year 2) | 14.02948 1.974338 7.11 0.000 10.15839 17.90056
grade 9 (Secondary, Year 3) | 13.17903 1.912108 6.89 0.000 9.429958 16.9281
grade 10 (Secondary, Year 4) | 17.18161 1.987756 8.64 0.000 13.28422 21.079
grade 11 (Secondary, Year 5) | 21.95274 4.045356 5.43 0.000 14.02101 29.88447
Incomplete Cent. Tecnico Productivo CETPRO/ Cen.. | 5.923465 12.01991 0.49 0.622 -17.64398 29.49091
|
gender |
female | 0 (omitted)
|
headedu |
Grade 1 | 3.08687 2.422483 1.27 0.203 -1.662892 7.836633
Grade 2 | -.1294352 2.186381 -0.06 0.953 -4.416273 4.157402
Grade 3 | 3.416051 2.012164 1.70 0.090 -.5291995 7.361301
Grade 4 | 2.01608 2.34269 0.86 0.390 -2.577231 6.609392
Grade 5 | .1457518 2.15339 0.07 0.946 -4.0764 4.367903
Grade 6 | 2.59335 1.862947 1.39 0.164 -1.059331 6.246031
Grade 7 | 2.523363 2.353032 1.07 0.284 -2.090226 7.136952
Grade 8 | -.248374 2.310862 -0.11 0.914 -4.77928 4.282532
Grade 9 | -1.218605 2.100773 -0.58 0.562 -5.33759 2.90038
Grade 10 | 3.31664 2.613716 1.27 0.205 -1.808073 8.441354
Grade 11 | .6734153 1.920759 0.35 0.726 -3.092616 4.439447
Technical, pedagogical, CETPRO (incomplete) | .4053503 2.354462 0.17 0.863 -4.211042 5.021743
Technical, pedagogical, CETPRO (complete) | 2.045722 2.214856 0.92 0.356 -2.296945 6.388389
University (incomplete) | 2.068615 2.70868 0.76 0.445 -3.242293 7.379523
University (complete) | -.1819136 2.528003 -0.07 0.943 -5.138568 4.774741
17 | 7.301087 11.99829 0.61 0.543 -16.22396 30.82614
|
hhsize |
3 | -2.372459 1.570443 -1.51 0.131 -5.451626 .7067074
4 | -2.630457 1.584098 -1.66 0.097 -5.736398 .4754845
5 | -2.624139 1.606283 -1.63 0.102 -5.773579 .5253001
6 | -3.593771 1.650597 -2.18 0.030 -6.830096 -.3574468
7 | -3.079095 1.707965 -1.80 0.072 -6.427902 .269713
8 | -1.720169 1.800351 -0.96 0.339 -5.250116 1.809779
9 | -4.19117 1.964325 -2.13 0.033 -8.042621 -.3397188
10 | -1.438381 2.192615 -0.66 0.512 -5.737442 2.86068
11 | -5.012737 2.734015 -1.83 0.067 -10.37332 .3478449
12 | 6.449574 4.191184 1.54 0.124 -1.76808 14.66723
13 | 9.503201 6.221924 1.53 0.127 -2.696125 21.70253
14 | 1.026939 5.661173 0.18 0.856 -10.07292 12.1268
15 | 7.801022 11.92675 0.65 0.513 -15.58375 31.18579
16 | -10.13639 9.08781 -1.12 0.265 -27.95485 7.682083
18 | -6.216919 12.11358 -0.51 0.608 -29.96802 17.53418
|
_cons | 84.05819 3.043993 27.61 0.000 78.08983 90.02655
---------------------------------------------------+----------------------------------------------------------------
sigma_u | 14.773323
sigma_e | 9.5909853
rho | .70349545 (fraction of variance due to u_i)
--------------------------------------------------------------------------------------------------------------------
F test that all u_i=0: F(1782, 3225) = 4.05 Prob > F = 0.0000
I am currently looking to estimate a fixed effects regression - it looks at how natural disasters affect test scores.
I wish to include child fixed effects (engrade and gender) and household fixed effects headedu and hhsize.
As gender is likely to play a role in influencing the role of child labour, I feel it is important.
However - it drops out due to being time invariant.
Am I able to estimate the model without gender? Or is there a better way to incorporate its influence that won't cause it to drop out?
Also - I don't fully understand the xtset command. When I specify xtset panelid round - does this mean that round is being used as a fixed effect, and as such I could remove engrade from the model as a way of controlling for the role of the child's age in influencing test scores. Or - am I right in thinking i.engrade is necessary,
xtset panelid round
xtreg ppvt disaster worktime juntos disjunt foodsec i.engrade i.gender i.headedu i.hhsize, fe
note: 2.gender omitted because of collinearity
Fixed-effects (within) regression Number of obs = 5,056
Group variable: panelid Number of groups = 1,783
R-sq: Obs per group:
within = 0.7978 min = 1
between = 0.2545 avg = 2.8
overall = 0.5126 max = 3
F(48,3225) = 265.17
corr(u_i, Xb) = 0.0578 Prob > F = 0.0000
--------------------------------------------------------------------------------------------------------------------
ppvt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------------------------------------------+----------------------------------------------------------------
disaster | -.3327084 .4389233 -0.76 0.449 -1.193305 .5278886
worktime | .3705333 .1381362 2.68 0.007 .0996897 .6413768
juntos | -.8159844 .7564076 -1.08 0.281 -2.299073 .6671039
disjunt | .5679331 .5821971 0.98 0.329 -.5735806 1.709447
foodsec | -.2515621 .2981846 -0.84 0.399 -.8362126 .3330884
|
engrade |
grade 1 (Primary, Grade 1) | -31.74428 2.255193 -14.08 0.000 -36.16603 -27.32252
grade 2 (Primary, Grade 2) | -25.51156 1.907192 -13.38 0.000 -29.25099 -21.77213
grade 3 (Primary, Grade 3) | -17.99302 1.951363 -9.22 0.000 -21.81906 -14.16699
grade 4 (Primary, Grade 4) | -2.450614 2.149643 -1.14 0.254 -6.665418 1.76419
grade 5 (Primary, Grade 5) | -.0301754 1.966074 -0.02 0.988 -3.885057 3.824706
grade 6 (Primary, Grade 6) | 1.970767 1.893533 1.04 0.298 -1.741883 5.683417
grade 7 (Secondary, Year 1) | 6.933335 1.929764 3.59 0.000 3.149648 10.71702
grade 8 (Secondary, Year 2) | 14.02948 1.974338 7.11 0.000 10.15839 17.90056
grade 9 (Secondary, Year 3) | 13.17903 1.912108 6.89 0.000 9.429958 16.9281
grade 10 (Secondary, Year 4) | 17.18161 1.987756 8.64 0.000 13.28422 21.079
grade 11 (Secondary, Year 5) | 21.95274 4.045356 5.43 0.000 14.02101 29.88447
Incomplete Cent. Tecnico Productivo CETPRO/ Cen.. | 5.923465 12.01991 0.49 0.622 -17.64398 29.49091
|
gender |
female | 0 (omitted)
|
headedu |
Grade 1 | 3.08687 2.422483 1.27 0.203 -1.662892 7.836633
Grade 2 | -.1294352 2.186381 -0.06 0.953 -4.416273 4.157402
Grade 3 | 3.416051 2.012164 1.70 0.090 -.5291995 7.361301
Grade 4 | 2.01608 2.34269 0.86 0.390 -2.577231 6.609392
Grade 5 | .1457518 2.15339 0.07 0.946 -4.0764 4.367903
Grade 6 | 2.59335 1.862947 1.39 0.164 -1.059331 6.246031
Grade 7 | 2.523363 2.353032 1.07 0.284 -2.090226 7.136952
Grade 8 | -.248374 2.310862 -0.11 0.914 -4.77928 4.282532
Grade 9 | -1.218605 2.100773 -0.58 0.562 -5.33759 2.90038
Grade 10 | 3.31664 2.613716 1.27 0.205 -1.808073 8.441354
Grade 11 | .6734153 1.920759 0.35 0.726 -3.092616 4.439447
Technical, pedagogical, CETPRO (incomplete) | .4053503 2.354462 0.17 0.863 -4.211042 5.021743
Technical, pedagogical, CETPRO (complete) | 2.045722 2.214856 0.92 0.356 -2.296945 6.388389
University (incomplete) | 2.068615 2.70868 0.76 0.445 -3.242293 7.379523
University (complete) | -.1819136 2.528003 -0.07 0.943 -5.138568 4.774741
17 | 7.301087 11.99829 0.61 0.543 -16.22396 30.82614
|
hhsize |
3 | -2.372459 1.570443 -1.51 0.131 -5.451626 .7067074
4 | -2.630457 1.584098 -1.66 0.097 -5.736398 .4754845
5 | -2.624139 1.606283 -1.63 0.102 -5.773579 .5253001
6 | -3.593771 1.650597 -2.18 0.030 -6.830096 -.3574468
7 | -3.079095 1.707965 -1.80 0.072 -6.427902 .269713
8 | -1.720169 1.800351 -0.96 0.339 -5.250116 1.809779
9 | -4.19117 1.964325 -2.13 0.033 -8.042621 -.3397188
10 | -1.438381 2.192615 -0.66 0.512 -5.737442 2.86068
11 | -5.012737 2.734015 -1.83 0.067 -10.37332 .3478449
12 | 6.449574 4.191184 1.54 0.124 -1.76808 14.66723
13 | 9.503201 6.221924 1.53 0.127 -2.696125 21.70253
14 | 1.026939 5.661173 0.18 0.856 -10.07292 12.1268
15 | 7.801022 11.92675 0.65 0.513 -15.58375 31.18579
16 | -10.13639 9.08781 -1.12 0.265 -27.95485 7.682083
18 | -6.216919 12.11358 -0.51 0.608 -29.96802 17.53418
|
_cons | 84.05819 3.043993 27.61 0.000 78.08983 90.02655
---------------------------------------------------+----------------------------------------------------------------
sigma_u | 14.773323
sigma_e | 9.5909853
rho | .70349545 (fraction of variance due to u_i)
--------------------------------------------------------------------------------------------------------------------
F test that all u_i=0: F(1782, 3225) = 4.05 Prob > F = 0.0000
Comment