Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Stored critical values of a DF-GLS unit-root test?

    I'm looking for the stored critical values of a DF-GLS unit-root test for a certain "maxlag". All I found so far has been the "DF-GLS statistics" for a certain "maxlag". It is listed in the matrix r(results). But there a no critical values. A test statistic without the corresponding critical values makes not much sense.

    Does anybody know, where I can find the stored critical values for a certain "maxlag"?

    The corresponding page in the TS Handbook says:

    Click image for larger version

Name:	Unbenannt.jpg
Views:	1
Size:	69.7 KB
ID:	1532730
    Last edited by Rene Macon; 20 Jan 2020, 11:22.

  • #2
    Edit: My first attempt was simple but not helpful. Here is an improved answer:


    I have Stata 15 and

    Code:
    . which dfgls
    (output omitted)
    *! version 1.1.1  11mar2016
    In the main routine of that ado-file, the critical values are stored in local macros rzt1, rzt5, and rzt10 (by the way, those names are created from tempname earlier in the code and think the values should have been stored as scalars, but that is immaterial for the question).

    You could just clone the ado-file, store it under dfgls2.ado and change the name of the main routine to dfgls2. In dfgls2.ado, make the following changes:

    1. Change the line (229 in version 1.1.1) from

    Code:
    mat `row' = (`i', `maici', `sci', `armse', `dfti')
    to

    Code:
    mat `row' = (`i', `maici', `sci', `armse', `dfti', ., ., .)
    2. Change the block (starting a couple of lines below) from

    Code:
                if "`ers'"=="ers" { 
                    Out `stat' `first' `i' `dfti' /*
                        */ `rzt1' `rzt5' `rzt10'
                }
                else { 
                    Out `stat' `first' `i' `dfti' /*
                        */ `rzt1' `resp5' `resp10'
                }
    to

    Code:
                if "`ers'"=="ers" { 
                    Out `stat' `first' `i' `dfti' /*
                        */ `rzt1' `rzt5' `rzt10'
                    mat `results'[`ri', 6] = `rzt1'
                    mat `results'[`ri', 7] = `rzt5'
                    mat `results'[`ri', 8] = `rzt10'
                }
                else { 
                    Out `stat' `first' `i' `dfti' /*
                        */ `rzt1' `resp5' `resp10'
                        mat `results'[`ri', 6] = `rzt1'
                        mat `results'[`ri', 7] = `resp5'
                        mat `results'[`ri', 8] = `resp10'
                }
    3. Change the line (at the end of the main routine) from

    Code:
    mat colnames `results' = k MAIC SIC RMSE DFGLS
    to

    Code:
    mat colnames `results' = k MAIC SIC RMSE DFGLS crit_1 crit_5 crit_10
    Calling dfgls2 will then include the critical values in the r(results) matrix.

    I have not done a lot of testing, so be careful with this.

    Best
    Daniel
    Last edited by daniel klein; 22 Jan 2020, 05:00.

    Comment


    • #3
      Thanks a lot Daniel! Works perfectly!
      For simplicity here the complete modified code. File name is "dfgls_modified.ado". Modifications are marked with /* MODIFICATION */ line before and after:
      Code:
      *! version 1.1.1  11mar2016  /* MODIFICATION */  
      program define dfgls_modified, rclass sortpreserve
          version 8
      
          syntax varname(ts) [if] [in] [ ,         /*
              */ Maxlag(numlist integer >=0 max=1)     /*
              */ GENerate(string) noTrend ERS]  
      
          local resflag 0
          local generat = cond("`generate'" == "", "", "`generate'")
      
              if "`generat'" != "" {
                  capture confirm new variable `generat'
                  if _rc {
                          di as err "`generat' already exists: " _c  
                          di as err "specify new variable with generate( ) option"
                          exit 110
                  }
              local resflag 1
              }
      
             marksample touse
                  /* get time variables */
          _ts timevar panelvar `if' `in', sort onepanel
          markout `touse' `timevar'
          tsreport if `touse', report
          if r(N_gaps) {
              di as err "sample may not contain gaps"
              exit 498
          }
      
      
          tempvar trd y iota qdtrd dty yhat
          tempname nobs cbar alpha vcv cv stat i rzt1 rzt5 rzt10 first count kmax
          tempname resp10 resp5 ldty2 sldty2 tau t2 alpha tprob dft0b armse
          tempname sci dfti bSC results maici row
              
          if "`trend'"=="notrend" {
              local trend 0
              local stat "mu"
          }
          else {
              local trend 1
              local stat "tau"
          }
      
          gen  double `count'=sum(`touse')
          local nobs=`count'[_N]
      
      
          if `nobs' == 0 {
              di as err "no observations"
              exit 2000
          }    
      
      
          if "`maxlag'" != "" {
              local kmax ""
          }    
          else {
                          /* set maxlag via Schwert criterion
                          (Ng/Perron JASA 1995) */
      
              local maxlag = int(12*(`nobs'/100)^0.25)
              local kmax = "Maxlag = `maxlag' chosen by Schwert criterion"
          }
      
                          /* cbars appropriate for trended,
                          detrended case */
      
          if `trend' {
              gen double `trd' = _n
              local cbar -13.5
          }
          else {
              local cbar -7.0
          }    
      
          scalar `alpha' = 1+`cbar'/`nobs'
      
          qui {
              gen double `y' = `varlist' if `count'==1
              gen double `iota' = 1 if `count'==1
              if `trend' {
                  gen double `qdtrd' = `trd' if `count'==1
              }
              replace `y' = `varlist'-`alpha'*L.`varlist' if `count'>1
              replace `iota' = 1-`alpha' if `count'>1
              if `trend' {
                  replace `qdtrd' = `trd'-`alpha'*L.`trd' if `count'>1
              }
      
      /*        
      run the GLS regression to detrend (or demean) the data via quasi-differencing
      run over all available observations by relocating additional markout below
      */
      
              if `trend' {
                  qui reg  `y' `iota' `qdtrd' if `touse', noc
              }
              else {
                  qui reg `y' `iota' if `touse', noc
              }
      /* correct for missing initial obs */
      
              gen byte `t2' = 1 if `touse'
              markout `touse' L(1/`maxlag').`t2'
      
      /* generate OLS residual, not GLS residual, which becomes object of
          (A)DF regression
      */
      
              if `trend' {
                  gen double `dty'=`varlist'-_b[`iota']-_b[`qdtrd']*`trd'
              }
              else {
                  gen double `dty'=`varlist'-_b[`iota']
              }
      
      /* sldty2 is used in the calculation of MAIC below
      * See p. 8 in Ng & Perron (2000).
      */
      
              gen double `ldty2' = (L.`dty')^2 if `touse'
              qui summarize `ldty2' if `touse',meanonly
              local sldty2 = r(sum)
              if `trend' {
                  GetCritE `nobs'
              }
              else {
                  GetCritD `nobs'
              }
              local rzt1=r(Zt1)
              local rzt5=r(Zt5)
              local rzt10=r(Zt10)
          }
          
      /* markout one more to account for lag of delta */
      
          local maxl1 = `maxlag'+1
          markout `touse' L(1/`maxl1').`t2'
          qui summarize D.`dty' if `touse',meanonly
          local nobs=r(N)
      
          local sname = abbrev("`varlist'", 16)
          di " "
          di as txt "DF-GLS for " as res "`sname'" _col(58) /*
              */ as txt "Number of obs = " as res %5.0f `nobs'
          if "`kmax'" !="" {
              di as txt "Maxlag = " as res `maxlag' /*
                  */ as txt " chosen by Schwert criterion"
          }
          di " "
          local first 1
              if `maxlag' == 0 {
      /* run the DF regression, no constant nor trend */
              qui reg D.`dty' L.`dty' if `touse', noc
              if `resflag' {
                  qui predict double `generat',r
              }
              mat `vcv'=e(V)
              return scalar dft0=_b[L.`dty']/sqrt(`vcv'[1,1])
              return scalar rmse0=sqrt(e(rss)/`nobs')
              if `trend' {
                  GetCritT `nobs' `maxlag'
              }
              else {
                  GetCritM `nobs' `maxlag'
              }
              local resp5=r(resp5)
              local resp10=r(resp10)
              if "`ers'"=="ers" {
                  Out `stat' `first' 0 `return(dft0)' `rzt1' /*
                      */ `rzt5' `rzt10'
              }
              else {
                  Out `stat' `first' 0 `return(dft0)' `rzt1' /*
                      */ `resp5' `resp10'
              }
              exit
                 }
              else {
      /* loop over lags 1..maxlag */
              local i = `maxlag'
              local first 1
              local bRMSE .
              local lOpt = -1
              scalar `bSC' = .
              local bmaic .
              local ri = 0
              local rlSC = .
              local rlmaic = .
              while `i'>0 {
                  local ri = `ri' + 1
      /* run the ADF regression, no constant nor trend */
                  qui reg D.`dty' L.`dty' DL(1/`i').`dty' /*
                      */ if `touse', noc
                  if `resflag' {
                      qui predict double `generat',r
                      local resflag 0
                  }
                  mat `vcv'=e(V)
                  local col=e(df_m)
                  scalar `dfti'=_b[L.`dty']/sqrt(`vcv'[1,1])
                  
                  scalar `armse'=sqrt(e(rss)/`nobs')
      
                  qui test DL`i'.`dty'
                  scalar `tprob' = r(p)
                  if `tprob'<0.10 & `lOpt'==-1 {
                      local lOpt = `i'
                      local bRMSE = `armse'
                  }
      /* Calculate SC */
                  scalar `sci'=log((`armse')^2)  /*
                      */ + (`i'+1)*log(`nobs')/`nobs'
                  local rlSC = cond(`sci'<`bSC',`ri',`rlSC')
                  scalar `bSC' = min(`bSC',`sci')
      
      /* Calculate MAIC, but first calculate tau variable */
      /* See p. 8 in Ng & Perron (2000) */
      
                  local tau = (`armse'^2)^(-1)/*
                      */ *(_b[L.`dty'])^2*`sldty2'
                  scalar `maici'=log(`armse'^2)/*
                      */ +2*(`tau'+`i')/`nobs'
                  local rlmaic = cond(`maici'<`bmaic',`ri',`rlmaic')
                  local bmaic = min(`bmaic',`maici')
      /* MODIFICATION */            
                              mat `row' = (`i', `maici', `sci', `armse', `dfti', ., ., .)
      /* MODIFICATION */    
                  mat `results' = (nullmat(`results') \ `row'  )
                  if `trend' {
                      GetCritT `nobs' `i'
                  }
                  else {
                      GetCritM `nobs' `i'
                  }
                  local resp5=r(resp5)
                  local resp10=r(resp10)
      /* MODIFICATION */    
                if "`ers'"=="ers" {
                      Out `stat' `first' `i' `dfti' /*
                          */ `rzt1' `rzt5' `rzt10'
                      mat `results'[`ri', 6] = `rzt1'
                      mat `results'[`ri', 7] = `rzt5'
                      mat `results'[`ri', 8] = `rzt10'
                  }
                  else {
                      Out `stat' `first' `i' `dfti' /*
                          */ `rzt1' `resp5' `resp10'
                          mat `results'[`ri', 6] = `rzt1'
                          mat `results'[`ri', 7] = `resp5'
                          mat `results'[`ri', 8] = `resp10'
                  }
      /* MODIFICATION */    
                  local i = `i' - 1
                  local first 0
              }
              if `maxlag' > 1 {
                  return scalar optlag = `lOpt'
                  di " "
                  if  `lOpt' !=-1 {
                      di as txt "Opt Lag (Ng-Perron seq t) = " /*
                          */as res %2.0f `lOpt' _col(22) /*
                          */as txt " with RMSE " /*
                          */ as res %9.0g `bRMSE'
                  }
                  else {
                      di as txt "Opt Lag (Ng-Perron seq t) = 0" /*
                          */ as res " [use maxlag(0)]"
                  }
                  di as txt "Min SC   = " as res /*
                      */ %9.0g `results'[`rlSC',3] /*
                      */ as txt " at lag " as res %2.0f /*
                      */ `results'[`rlSC',1] as txt " with RMSE " /*
                      */as res %9.0g `results'[`rlSC',4]
                  di as txt "Min MAIC = " as res /*
                      */ %9.0g `results'[`rlmaic',2] /*
                      */as txt " at lag " %2.0f /*
                      */ as res `results'[`rlmaic',1] /*
                      */ as txt " with RMSE " /*
                      */ as res %9.0g `results'[`rlmaic',4]
                  return scalar maiclag =  `results'[`rlmaic',1]
                  return scalar sclag = `results'[`rlSC',1]
              }
          }
          return scalar N =`nobs'
          return scalar maxlag = `maxlag'
      /* MODIFICATION */
              mat colnames `results' = k MAIC SIC RMSE DFGLS crit_1 crit_5 crit_10
      /* MODIFICATION */
          return matrix results `results'
      end
      
      program define Out, nclass
          args stat first lags dft rzt1 rzt5 rzt10
          if (`first') {
              di as txt  _col (16) "DF-GLS `stat'" /*
                      */ _col(32)  "1% Critical"  _col(50)  "5% Critical" /*
                      */ _col(67) "10% Critical"
                  di as txt "  [lags]" _col (14) "Test Statistic" /*
                      */ _col(36)  "Value" _col(54)  "Value" _col(72) "Value"
                  di as txt "{hline 78}"
          }
              di as txt _col(5) "`lags'" /*
                  */ _col(14) as res %10.3f `dft'  _col(31) %10.3f `rzt1' /*
                  */ _col(49) %10.3f `rzt5'  _col(67) %10.3f `rzt10'
      end
                         
      program define GetCritE, rclass
      /* interp values from Elliott et al, Econometrica 64:4 1996 Table 1c */
              args N
          tempname zt
                      mat `zt' = ( -3.77,-3.58,-3.46,-3.48\ /*
                                */ -3.19,-3.03,-2.93,-2.89\ /*
                                */ -2.89,-2.74,-2.64,-2.57)
      
              if `N' <= 50 {
                      local zt1  = `zt'[1,1]
                      local zt5  = `zt'[2,1]
                      local zt10 = `zt'[3,1]
              }
              else if `N' <= 100 {
                      local zt1  = `zt'[1,1] + (`N'-50)/50 * (`zt'[1,2]-`zt'[1,1])
                      local zt5  = `zt'[2,1] + (`N'-50)/50 * (`zt'[2,2]-`zt'[2,1])
                      local zt10 = `zt'[3,1] + (`N'-50)/50 * (`zt'[3,2]-`zt'[3,1])
              }
              else if `N' <= 200 {
                      local zt1  = `zt'[1,2] + (`N'-100)/100 * (`zt'[1,3]-`zt'[1,2])
                      local zt5  = `zt'[2,2] + (`N'-100)/100 * (`zt'[2,3]-`zt'[2,2])
                      local zt10 = `zt'[3,2] + (`N'-100)/100 * (`zt'[3,3]-`zt'[3,2])
              }
              else {
                      local zt1  = `zt'[1,4]
                      local zt5  = `zt'[2,4]
                      local zt10 = `zt'[3,4]
              }
              return scalar Zt1  = `zt1'
              return scalar Zt5  = `zt5'
              return scalar Zt10 = `zt10'
      end
      
      program define GetCritD, rclass
      /* from dfuller.ado */
              args N
          tempname zt
                      mat `zt' = ( -2.66,-2.62,-2.60,-2.58,-2.58,-2.58\ /*
                                */ -1.95,-1.95,-1.95,-1.95,-1.95,-1.95\ /*
                                */ -1.60,-1.61,-1.61,-1.62,-1.62,-1.62)
      
              if `N' <= 25 {
                      local zt1  = `zt'[1,1]
                      local zt5  = `zt'[2,1]
                      local zt10 = `zt'[3,1]
              }
              else if `N' <= 50 {
                      local zt1  = `zt'[1,1] + (`N'-25)/25 * (`zt'[1,2]-`zt'[1,1])
                      local zt5  = `zt'[2,1] + (`N'-25)/25 * (`zt'[2,2]-`zt'[2,1])
                      local zt10 = `zt'[3,1] + (`N'-25)/25 * (`zt'[3,2]-`zt'[3,1])
              }
              else if `N' <= 100 {
                      local zt1  = `zt'[1,2] + (`N'-50)/50 * (`zt'[1,3]-`zt'[1,2])
                      local zt5  = `zt'[2,2] + (`N'-50)/50 * (`zt'[2,3]-`zt'[2,2])
                      local zt10 = `zt'[3,2] + (`N'-50)/50 * (`zt'[3,3]-`zt'[3,2])
              }
              else if `N' <= 250 {
                      local zt1  = `zt'[1,3] + (`N'-100)/150 * (`zt'[1,4]-`zt'[1,3])
                      local zt5  = `zt'[2,3] + (`N'-100)/150 * (`zt'[2,4]-`zt'[2,3])
                      local zt10 = `zt'[3,3] + (`N'-100)/150 * (`zt'[3,4]-`zt'[3,3])
              }
              else if `N' <= 500 {
                      local zt1  = `zt'[1,4] + (`N'-250)/250 * (`zt'[1,5]-`zt'[1,4])
                      local zt5  = `zt'[2,4] + (`N'-250)/250 * (`zt'[2,5]-`zt'[2,4])
                      local zt10 = `zt'[3,4] + (`N'-250)/250 * (`zt'[3,5]-`zt'[3,4])
              }
              else {
                      local zt1  = `zt'[1,6]
                      local zt5  = `zt'[2,6]
                      local zt10 = `zt'[3,6]
              }
              return scalar Zt1  = `zt1'
              return scalar Zt5  = `zt5'
              return scalar Zt10 = `zt10'
      end
      program define GetCritM, rclass
      /* response surface values from Cheung and Lai OBES 1995 Table 1, cols 1-2 */
          args N p
          tempname rsm
          mat `rsm' = ( -1.624, -19.888, 155.231, 0.709, 5.480, -16.055 \ /*
              */    -1.948, -17.839, 104.086, 0.802, 5.558, -18.332 )
          
          local n1 = 1.0/`N'
          local pt = `p'/`N'
          local cr10 = `rsm'[1,1] + `rsm'[1,2]*`n1' + `rsm'[1,3]*(`n1'^2) + /*
              */ `rsm'[1,4]*`pt' + `rsm'[1,5]*(`pt'^2) + `rsm'[1,6]*(`pt'^3)
          local cr05 = `rsm'[2,1] + `rsm'[2,2]*`n1' + `rsm'[2,3]*(`n1'^2) + /*
              */ `rsm'[2,4]*`pt' + `rsm'[2,5]*(`pt'^2) + `rsm'[2,6]*(`pt'^3)
          return scalar resp10 = `cr10'
          return scalar resp5 = `cr05'
      end
      program define GetCritT, rclass
      /* response surface values from Cheung and Lai OBES 1995 Table 1, cols 3-4 */
          args N p
          tempname rst
          mat `rst' = ( -2.550, -20.166, 155.215, 1.133, 9.808, -20.313 \ /*
              */    -2.838, -20.328, 124.191, 1.267, 10.530, -24.600 )
          
          local n1 = 1.0/`N'
          local pt = `p'/`N'
          local cr10 = `rst'[1,1] + `rst'[1,2]*`n1' + `rst'[1,3]*(`n1'^2) + /*
              */ `rst'[1,4]*`pt' + `rst'[1,5]*(`pt'^2) + `rst'[1,6]*(`pt'^3)
          local cr05 = `rst'[2,1] + `rst'[2,2]*`n1' + `rst'[2,3]*(`n1'^2) + /*
              */ `rst'[2,4]*`pt' + `rst'[2,5]*(`pt'^2) + `rst'[2,6]*(`pt'^3)
          return scalar resp10 = `cr10'
          return scalar resp5 = `cr05'
      end

      Comment

      Working...
      X