Hi Statalist users,
I am conducting an event study where the outcome variable is the total number of sick spells for region i in the year-month t (variable modate). In total I have 84 year-month observations for each of the 50 regions forming a balanced panel. The key explanatory variable is x. To conduct the event study, I have created eight leads and lags (as dummy 1-0 variables) and the "event" dummy. The problem is that I need to run the regression only within the lag 8 - lead 8 period, in other words drop everything after lead 8 and lag 8 (so that I can choose the event variable as the reference one), and I do not know how to do this.
I am using STATA version 15.
This is the code I have so far:
This code gives me the estimates for all the observations, not only those within the ag 8 - lead 8 period.
I was thinking about collapsing the data so I can have only the estimation window I want, but I am not sure about writting the collapse command in this case.
A preview of my data: (I only show here some of the leads and lags adn only 2 of the 50 regions)
Any help will be highly appreciated.
Thank you.
I am conducting an event study where the outcome variable is the total number of sick spells for region i in the year-month t (variable modate). In total I have 84 year-month observations for each of the 50 regions forming a balanced panel. The key explanatory variable is x. To conduct the event study, I have created eight leads and lags (as dummy 1-0 variables) and the "event" dummy. The problem is that I need to run the regression only within the lag 8 - lead 8 period, in other words drop everything after lead 8 and lag 8 (so that I can choose the event variable as the reference one), and I do not know how to do this.
I am using STATA version 15.
This is the code I have so far:
Code:
xtset region modate xtreg spells event L(1/8).event F(1/8).event i.month i.year, fe cluster(region)
I was thinking about collapsing the data so I can have only the estimation window I want, but I am not sure about writting the collapse command in this case.
A preview of my data: (I only show here some of the leads and lags adn only 2 of the 50 regions)
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte region float(year month) double spells float(modate event pre1 pre2 post1 post2) 1 2009 1 6982 588 1 . . 0 0 1 2009 2 5203 589 0 1 . 0 1 1 2009 3 5371 590 0 0 1 1 0 1 2009 4 3749 591 1 0 0 0 0 1 2009 5 4820 592 0 1 0 0 0 1 2009 6 4713 593 0 0 1 0 0 1 2009 7 3996 594 0 0 0 0 1 1 2009 8 2762 595 0 0 0 1 0 1 2009 9 5386 596 1 0 0 0 0 1 2009 10 7058 597 0 1 0 0 0 1 2009 11 8191 598 0 0 1 0 1 1 2009 12 4912 599 0 0 0 1 0 1 2010 1 5806 600 1 0 0 0 0 1 2010 2 5709 601 0 1 0 0 0 1 2010 3 5428 602 0 0 1 0 1 1 2010 4 4079 603 0 0 0 1 0 1 2010 5 5039 604 1 0 0 0 0 1 2010 6 4641 605 0 1 0 0 0 1 2010 7 3838 606 0 0 1 0 0 1 2010 8 2484 607 0 0 0 0 0 1 2010 9 4520 608 0 0 0 0 0 1 2010 10 4807 609 0 0 0 0 0 1 2010 11 5627 610 0 0 0 0 1 1 2010 12 5112 611 0 0 0 1 0 1 2011 1 7783 612 1 0 0 0 0 1 2011 2 5444 613 0 1 0 0 0 1 2011 3 6099 614 0 0 1 0 0 1 2011 4 3637 615 0 0 0 0 0 1 2011 5 5158 616 0 0 0 0 1 1 2011 6 4517 617 0 0 0 1 0 1 2011 7 3449 618 1 0 0 0 1 1 2011 8 2382 619 0 1 0 1 0 1 2011 9 4251 620 1 0 1 0 1 1 2011 10 4693 621 0 1 0 1 1 1 2011 11 5379 622 1 0 1 1 1 1 2011 12 3786 623 1 1 0 1 1 1 2012 1 5626 624 1 1 1 1 0 1 2012 2 5809 625 1 1 1 0 0 1 2012 3 4380 626 0 1 1 0 0 1 2012 4 3013 627 0 0 1 0 0 1 2012 5 3830 628 0 0 0 0 0 1 2012 6 3280 629 0 0 0 0 0 1 2012 7 2620 630 0 0 0 0 0 1 2012 8 1610 631 0 0 0 0 0 1 2012 9 3034 632 0 0 0 0 0 1 2012 10 3962 633 0 0 0 0 0 1 2012 11 3685 634 0 0 0 0 0 1 2012 12 2690 635 0 0 0 0 0 1 2013 1 4623 636 0 0 0 0 0 1 2013 2 5022 637 0 0 0 0 0 1 2013 3 3936 638 0 0 0 0 0 1 2013 4 3380 639 0 0 0 0 0 1 2013 5 3589 640 0 0 0 0 0 1 2013 6 2907 641 0 0 0 0 0 1 2013 7 2553 642 0 0 0 0 0 1 2013 8 1547 643 0 0 0 0 0 1 2013 9 3139 644 0 0 0 0 0 1 2013 10 3778 645 0 0 0 0 0 1 2013 11 3715 646 0 0 0 0 0 1 2013 12 3119 647 0 0 0 0 0 1 2014 1 5436 648 0 0 0 0 0 1 2014 2 4295 649 0 0 0 0 1 1 2014 3 4090 650 0 0 0 1 0 1 2014 4 2664 651 1 0 0 0 0 1 2014 5 3461 652 0 1 0 0 0 1 2014 6 3355 653 0 0 1 0 0 1 2014 7 2566 654 0 0 0 0 0 1 2014 8 1624 655 0 0 0 0 0 1 2014 9 3526 656 0 0 0 0 0 1 2014 10 4526 657 0 0 0 0 0 1 2014 11 3787 658 0 0 0 0 0 1 2014 12 3013 659 0 0 0 0 1 1 2015 1 11022 660 0 0 0 1 1 1 2015 2 11502 661 1 0 0 1 0 1 2015 3 8682 662 1 1 0 0 0 1 2015 4 5738 663 0 1 1 0 1 1 2015 5 6910 664 0 0 1 1 0 1 2015 6 6786 665 1 0 0 0 0 1 2015 7 5014 666 0 1 0 0 0 1 2015 8 3422 667 0 0 1 0 0 1 2015 9 6184 668 0 0 0 0 0 1 2015 10 7328 669 0 0 0 0 0 1 2015 11 7672 670 0 0 0 0 . 1 2015 12 5862 671 0 0 0 . . 2 2009 1 2989 588 0 . . 1 1 2 2009 2 2586 589 1 0 . 1 0 2 2009 3 2595 590 1 1 0 0 1 2 2009 4 2247 591 0 1 1 1 1 2 2009 5 2553 592 1 0 1 1 0 2 2009 6 2338 593 1 1 0 0 0 2 2009 7 2178 594 0 1 1 0 0 2 2009 8 1970 595 0 0 1 0 1 2 2009 9 2553 596 0 0 0 1 0 2 2009 10 2935 597 1 0 0 0 0 2 2009 11 3323 598 0 1 0 0 1 2 2009 12 2349 599 0 0 1 1 0 2 2010 1 2433 600 1 0 0 0 1 2 2010 2 2532 601 0 1 0 1 0 2 2010 3 2501 602 1 0 1 0 0 2 2010 4 2282 603 0 1 0 0 0 end format %tm modate
Thank you.