Hi all,
Using Stata 15.1, I am trying to keep consecutive observations per gvkey close to the announcement date of a transaction. Announcementdummy=1 is the closest observation to the transaction and this is my distinct starting point. Using the below codes, I still end up with an unbalanced panel. What can be improved?
Thanks in advance.
Using Stata 15.1, I am trying to keep consecutive observations per gvkey close to the announcement date of a transaction. Announcementdummy=1 is the closest observation to the transaction and this is my distinct starting point. Using the below codes, I still end up with an unbalanced panel. What can be improved?
Thanks in advance.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long gvkey byte(announcementdummy _spell _seq) float length 1082 1 1 1 8 1082 2 1 2 8 1082 3 1 3 8 1082 4 1 4 8 1382 1 1 1 9 1382 2 1 2 9 1382 3 1 3 9 1382 4 1 4 9 2290 1 1 1 9 2290 2 1 2 9 2290 3 1 3 9 2290 4 1 4 9 2589 1 1 1 6 2589 2 1 2 6 2589 3 1 3 6 2589 4 1 4 6 2597 1 1 1 5 2597 2 1 2 5 2597 3 1 3 5 2597 4 1 4 5 3116 1 1 1 7 3116 2 1 2 7 3116 3 1 3 7 3116 4 1 4 7 3169 1 1 1 5 3169 2 1 2 5 3169 3 1 3 5 3169 4 1 4 5 3310 1 1 1 15 3310 2 1 2 15 3310 3 1 3 15 3310 4 1 4 15 3497 1 1 1 8 3497 2 1 2 8 3497 3 1 3 8 3497 4 1 4 8 3612 1 1 1 9 3612 2 1 2 9 3612 3 1 3 9 3612 4 1 4 9 end . tsset gvkey announcementdummy panel variable: gvkey (unbalanced) time variable: announcemen~y, 1 to 22, but with gaps delta: 1 unit . xtset gvkey announcementdummy panel variable: gvkey (unbalanced) time variable: announcemen~y, 1 to 22, but with gaps delta: 1 unit . tsspell, f(L.announcementdummy==.) warning: data contain gaps; see help on tsspell . egen length = max(_seq), by(gvkey _spell) . keep if length >=4 (3,155 observations deleted) . keep if inrange(announcementdummy, 1, 4) (6,898 observations deleted) . tab announcementdummy announcemen | t dummy | Freq. Percent Cum. ------------+----------------------------------- 1 | 1,670 24.80 24.80 2 | 1,681 24.96 49.76 3 | 1,688 25.06 74.82 4 | 1,696 25.18 100.00 ------------+----------------------------------- Total | 6,735 100.00
Comment