Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • how to build the GLLAMM model???pLEASE HELP ME

    ID TIME_POINT A B C
    1 0 5 10 10
    1 1 25 25 25
    1 2 50 50 25
    2 0 50 25 25
    2 1 25 75 75
    2 2
    3 0 25 50 50
    3 1 50 95 50
    3 2 50 50 75
    4 0 5 25 5
    4 1 10 10 25
    4 2 5 10 90
    5 0
    5 1 25 5 10
    5 2 50 90 10
    6 0
    6 1 5 5 5
    6 2 5 5 5
    7 0
    7 1 10 5 5
    7 2 10 5 5
    8 0
    8 1
    8 2 75 95 25
    9 0
    9 1 5 5 5
    9 2 5 5 5
    10 0 10 10 5
    10 1 10 5 10
    10 2 10 10 25
    11 0 25 50 10
    11 1 5 95 10
    11 2 50 95 5
    12 0 50 95 75
    12 1 50 95 50
    12 2 50 95 50
    13 0 50 95 25
    13 1 50 95 25
    13 2 50 95 50
    14 0 50 95 5
    14 1 50 95 25
    14 2 50 95 25
    15 0 50 95
    15 1 50 95 50
    15 2 95 75 25
    16 0
    16 1 75 25 75
    16 2 75 50 75
    17 0 90 50 95
    17 1 50 25 95
    17 2
    18 0
    18 1 50 5 75
    18 2 25 10 75
    19 0 25 50 50
    19 1 25 50 50
    19 2 50 50 75
    20 0
    20 1
    20 2 50 25 25
    21 0 75 95 95
    21 1 95 75 95
    21 2 75 50 95
    22 0 95 75 50
    22 1 75 50 75
    22 2 90 25 75
    23 0 25 50 5
    23 1
    23 2 5 25 5
    24 0
    24 1
    24 2 25 5 10
    25 0 25 50 5
    25 1 25 10 25
    25 2
    26 0 75 10 10
    26 1 95 25 95
    26 2 95 50 95
    27 0 50 50 10
    27 1 10 50 10
    27 2 10 50 10
    28 0 75 10 25
    28 1 25 25 5
    28 2 5 5 5
    29 0
    29 1 90 25 75
    29 2 90 25 5
    30 0
    30 1 25 25 25
    30 2 25 10 50
    31 0
    31 1 75 95 95
    31 2
    32 0
    32 1
    32 2 5 5 10
    33 0 50 75 10
    33 1
    33 2
    34 0 10 75 5
    34 1
    34 2
    35 0
    35 1 25 10 10
    35 2 5 5 25
    36 0
    36 1 5 10 90
    36 2 5 10 75
    37 0 75 75 50
    37 1
    37 2
    38 0
    38 1
    38 2
    39 0 90 50 95
    39 1
    39 2
    40 0 75 50 75
    40 1
    40 2
    41 0 95 75 95
    41 1
    41 2
    42 0
    42 1
    42 2
    43 0
    43 1
    43 2
    44 0 75 50 25
    44 1
    44 2
    45 0 10 10 5
    45 1
    45 2
    46 0 10 10 5
    46 1
    46 2
    47 0 25 50 50
    47 1
    47 2
    48 0 50 75 75
    48 1
    48 2
    49 0 25 90 75
    49 1
    49 2
    50 0 5 50 5
    50 1
    50 2
    51 0
    51 1
    51 2
    52 0 95 50 75
    52 1
    52 2
    53 0 25 90 50
    53 1
    53 2
    54 0 5 10
    54 1
    54 2
    55 0 25 50 5
    55 1
    55 2
    56 0 25 25 25
    56 1
    56 2
    57 0 25 90 75
    57 1
    57 2
    58 0 50 50 25
    58 1
    58 2
    59 0 5 75 25
    59 1
    59 2
    60 0 50 95 75
    60 1
    60 2
    61 0 50 10 5
    61 1
    61 2
    62 0 5 25 75
    62 1
    62 2
    63 0 25 10 25
    63 1
    63 2
    64 0 90 25 50
    64 1
    64 2
    65 0 10 25 25
    65 1
    65 2
    66 0 5 10 10
    66 1
    66 2
    67 0 5 10 5
    67 1
    67 2
    68 0 25 25 25
    68 1
    68 2
    69 0 25 95 25
    69 1
    69 2
    70 0 5 25 10
    70 1
    70 2
    71 0 10 25 5
    71 1
    71 2
    72 0 90 50 75
    72 1
    72 2
    73 0 25 50 50
    73 1
    73 2
    74 0
    74 1
    74 2
    75 0 25 10 5
    75 1
    75 2
    76 0 25 50 10
    76 1
    76 2
    77 0 50 50 25
    77 1
    77 2
    78 0 75 50 50
    78 1
    78 2
    79 0 5 50 10
    79 1
    79 2
    80 0 25 10 10
    80 1
    80 2
    81 0 25 50 75
    81 1
    81 2
    82 0 95 25 75
    82 1
    82 2
    83 0 95 50 95
    83 1
    83 2
    84 0 5 10 5
    84 1
    84 2
    85 0 5 50 5
    85 1
    85 2
    86 0 25 75 50
    86 1
    86 2
    87 0 25 50 50
    87 1
    87 2
    88 0 5 10 5
    88 1
    88 2
    89 0 5 50 25
    89 1
    89 2
    90 0 5 50 75
    90 1
    90 2
    91 0 90 10 75
    91 1
    91 2
    92 0 5 50 5
    92 1 50 25 25
    92 2 75 90 90
    93 0 5 25 5
    93 1 5 25 5
    93 2 5 5 5
    94 0 5 50 5
    94 1 5 50 25
    94 2 25 50 5
    95 0
    95 1 25 5 10
    95 2 50 50 5
    96 0 50 10 5
    96 1
    96 2
    97 0 5 10 10
    97 1 50 25 25
    97 2 90 95 95
    98 0 90 75 75
    98 1 90 50 95
    98 2 75 75 50
    99 0 90 90 95
    99 1 95 95 95
    99 2
    100 0
    100 1
    100 2 75 75 75
    101 0 5 50 10
    101 1 50 25 50
    101 2 90 90 25
    102 0 5 10 5
    102 1 90 50 95
    102 2 75 75 75
    103 0 10 10 5
    103 1
    103 2 5 5 10
    104 0 50 50 50
    104 1 25 50 75
    104 2 25 25 25
    105 0 10 10 5
    105 1 10 5 5
    105 2 10 10 5
    106 0 90 50 90
    106 1 75 75 75
    106 2 75 75 50
    107 0 90 50 90
    107 1 75 10 90
    107 2 50 5 75
    108 0 25 10 25
    108 1 25 10 50
    108 2 95 5 25
    109 0 10 50 50
    109 1 25 50 50
    109 2 50 75 25
    110 0 5 10 5
    110 1 5 5 5
    110 2 5 5 5
    111 0 75 50 95
    111 1 25 50 90
    111 2 25 50 75
    112 0 5 10 10
    112 1 5 5 90
    112 2 25 50 75
    113 0 25 10 5
    113 1 5 5 5
    113 2 5 5 5
    114 0 75 10 50
    114 1 25 5 25
    114 2 75 75 25
    115 0
    115 1 10 50 25
    115 2 25 50 75
    116 0 25 75 5
    116 1 50 50 75
    116 2 50 90 75
    117 0
    117 1
    117 2 10 25 50
    118 0 5 10 5
    118 1 5 25 10
    118 2 5 10 25
    119 0 5 10 90
    119 1 25 25 50
    119 2 50 25 90
    120 0
    120 1
    120 2 50 50 50
    121 0 75 75 95
    121 1 50 75 75
    121 2 90 95 95
    122 0 5 10 5
    122 1 5 5 5
    122 2 10 5 5
    123 0 25 50 10
    123 1 25 10 25
    123 2 50 25 75
    124 0 25 75 90
    124 1 25 25 50
    124 2 25 5 25
    125 0 50 50 50
    125 1 50 50 50
    125 2 95 75 50
    126 0 75 75 75
    126 1 95 50 90
    126 2 25 10 25
    127 0 25 75 95
    127 1 25 90 90
    127 2 10 50 90
    128 0 10 25 5
    128 1 5 25 50
    128 2
    129 0 50 75 50
    129 1 50 50 90
    129 2 50 50 50
    130 0 10 90
    130 1
    130 2 95 95
    131 0 25 10 50
    131 1
    131 2
    132 0
    132 1 50 10 75
    132 2
    133 0
    133 1 75 50 75
    133 2 50 10 50
    134 0 50 50 90
    134 1
    134 2 50 75 25
    135 0 50 10 50
    135 1 50 50 50
    135 2 50 50 50
    136 0 75 25 25
    136 1 25 10 10
    136 2
    137 0 50 50 25
    137 1
    137 2
    138 0 25 50 10
    138 1 25 50 5
    138 2 50 25 25
    139 0 5 10 5
    139 1 5 5 5
    139 2 5 5 5
    140 0 5 10 5
    140 1 5 5 5
    140 2 5 5 5
    141 0 50 10 10
    141 1 5 10 5
    141 2
    142 0 50 50 75
    142 1 25 25 50
    142 2 50 50 95
    143 0
    143 1 5 5 5
    143 2 10 25 10
    144 0
    144 1 5 5 5
    144 2
    145 0
    145 1
    145 2 50 25 90
    146 0 95 95 95
    146 1
    146 2 50 75 50
    147 0
    147 1 50 90 25
    147 2 50 75 25
    148 0 25 50 50
    148 1 5 25 10
    148 2 25 25 50
    149 0 25 50 75
    149 1 25 50 75
    149 2 50 50 75
    I am attempting to develop a latent growth curve model repeated measures (LCARM)
    in order to examine A, B and C trajectors for children.
    A, B and C ARE CATEGORICAL VARIABLES

    I have 3 time points (0,1,2). THE dATA SET, as you can see CONTAINS 149 obs (children)
    I would ask you which model is correct ?



    Is anyone able to help me?

    I use stata 15 version

    thanks a million

    Tommaso Salvitti

  • #2
    What you could do to get a first basic descriptive impression of the data is the following:
    Code:
    mixed A i.TIME_POINT || ID:
    margins, over(TIME_POINT)
    marginsplot
    Depending on how you want to treat the outcomes, you can also use meologit instead.
    Best wishes

    (Stata 16.1 MP)

    Comment


    • #3
      i'd like to create a model using LATENT CLASS ANALYSIS WITH REPEATED MEASURES...
      I 'd like to use gllamm model but i cant't built the model,,,
      could you help me?

      Comment


      • #4
        do you know how to interpretate the outcome???

        Comment


        • #5
          I TRY TO SEE on internet but i can't understand the code...

          Comment


          • #6
            Your posts are a bit confusing.

            1. First you ask for a latent growth curve model and then you ask for a latent class analysis. What exactly are you after?

            2. You mention that the values in variables A, B and C are categorical. Based upon the nature of the values contained in them is everyone to assume that you mean ordered categorical?

            3. You state that you have Stata Release 15. Is there a particular reason why you are trying to use -gllamm- for this?

            4. Is it your intention to fit all three outcome variables (A, B and C) at once in a single comprehensive structural equation model? If so, then how are you planning to structure the covariances between them?

            Comment


            • #7
              Dear Joseph Coveney thanks for the answer. I try tu use GLLAMM or Repeated-measures latent class analysis.
              The aim of the study is to use
              Repeated measures latent class analysis (RMLCA) ( person-centered data analytic technique that is a repeated measures extension of latent class analysis (LCA), an approach that helps identify latent patterns of responding to categorical items with varying probabilities of endorsement of particular responses

              I WOULD LIKE TO USE FOR EACH VARIABLES A Repeated measures latent class analysis (RMLCA)...
              cAN YOU HELP ME??

              tHANKS A MILLION

              tOMMASO

              Comment


              • #8
                Tommaso,

                You seem to not have read Joseph's posting carefully enough. With recent Stata versions, many of the things that GLLAMM does can be done in other estimators. See, for instance, https://www.stata.com/features/overview/latent-class-analysis/

                If you look up latent class in the subject index of the pdf documentation, it will lead you to several examples as well.

                Phil

                Comment


                • #9
                  Dear Phil, thanks for the answer..I read carefully Joseph's post...I 've seen the example...the variables A, B and C are measured at three time point for each subject....(repeated measures).
                  Is it correct this instruction below??

                  gsem ( A<-, poisson)(C <- TIME_POINT ), lclass(C 4)
                  UP TO THIS MOMENT NO ONE HAS ANSWERED THANKS A MILLION

                  tOMMASO

                  Comment

                  Working...
                  X