Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Use of time dummies in fixed effects estimation

    Dear all,

    I am writing my Master's thesis, where I am doing an FE estimation on the probability of default of a panel data set from 2008-2018. I have been made aware that it could be a good idea to include time dummies to control for any aggregate time effect (i.e. changes in the economic environment).

    The variable I am interested in is the first one "WOMEN", as this is the fraction of female directors in the firms.

    When I run my regression without time dummies, I get significant results, but when I include them, the results turn insignificant. (See code)


    First my estimation with time dummies
    Code:
    . xtreg $ylist $xlist i.Time, fe vce(robust)
    
    Fixed-effects (within) regression               Number of obs     =     76,710
    Group variable: ID                              Number of groups  =     12,895
    
    R-sq:                                           Obs per group:
         within  = 0.2433                                         min =          1
         between = 0.2360                                         avg =        5.9
         overall = 0.2757                                         max =         46
    
                                                    F(36,12894)       =      42.19
    corr(u_i, Xb)  = 0.0226                         Prob > F          =     0.0000
    
                                        (Std. Err. adjusted for 12,895 clusters in ID)
    ----------------------------------------------------------------------------------
                     |               Robust
                  PD |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
               Women |  -.0011513    .001198    -0.96   0.337    -.0034996     .001197
                 ROA |   -.102301   .0060319   -16.96   0.000    -.1141244   -.0904776
                MTBt |   .0001097   .0000167     6.57   0.000      .000077    .0001424
              LIQUID |  -.0002312   .0000897    -2.58   0.010    -.0004069   -.0000554
                SOLV |    .007016   .0006786    10.34   0.000     .0056859    .0083461
               RISK1 |   .0176122    .000926    19.02   0.000     .0157971    .0194274
              MktCap |  -5.00e-09   6.51e-10    -7.69   0.000    -6.28e-09   -3.73e-09
                Inde |   .0022668    .000858     2.64   0.008      .000585    .0039486
         OtherBoards |   .0001514   .0001023     1.48   0.139    -.0000491    .0003519
               Bsize |  -.0004402   .0000529    -8.33   0.000    -.0005439   -.0003366
                dGov |   .0011423   .0004785     2.39   0.017     .0002044    .0020802
              dAudit |   .0000593   .0002138     0.28   0.782    -.0003599    .0004784
               dComp |    .000157   .0001896     0.83   0.408    -.0002146    .0005286
                dNom |  -.0012808    .000506    -2.53   0.011    -.0022726   -.0002889
             InstOwn |  -.0212428   .0022082    -9.62   0.000    -.0255713   -.0169144
                 FCF |  -3.85e-08   9.35e-09    -4.12   0.000    -5.68e-08   -2.02e-08
             dEnergy |  -.0017655   .0007583    -2.33   0.020    -.0032519   -.0002792
          dMaterials |   -.000624   .0005299    -1.18   0.239    -.0016627    .0004146
       dConsumerDisc |   .0023597   .0005535     4.26   0.000     .0012748    .0034447
        dConsumerSta |   .0001703   .0007431     0.23   0.819    -.0012863    .0016268
         dHealthCare |   .0027769   .0007045     3.94   0.000      .001396    .0041578
         dFinancials |  -.0004171   .0037388    -0.11   0.911    -.0077456    .0069114
    dInformationTech |   .0030258   .0007783     3.89   0.000     .0015002    .0045514
              dComms |   .0002314   .0009373     0.25   0.805    -.0016059    .0020686
          dUtilities |  -.0050889   .0007094    -7.17   0.000    -.0064794   -.0036985
         dRealEstate |  -.0060983   .0020713    -2.94   0.003    -.0101584   -.0020381
                     |
                Time |
                  2  |  -.0041194   .0003411   -12.08   0.000     -.004788   -.0034509
                  3  |  -.0039076    .000284   -13.76   0.000    -.0044642    -.003351
                  4  |  -.0017163   .0001891    -9.08   0.000     -.002087   -.0013457
                  5  |  -.0023712   .0002102   -11.28   0.000    -.0027832   -.0019593
                  6  |  -.0010996   .0001915    -5.74   0.000     -.001475   -.0007242
                  7  |  -.0013153   .0002051    -6.41   0.000    -.0017172   -.0009133
                  8  |   -.001092   .0002049    -5.33   0.000    -.0014935   -.0006904
                  9  |  -.0015867    .000247    -6.42   0.000    -.0020708   -.0011026
                 10  |  -.0032568   .0002524   -12.90   0.000    -.0037515    -.002762
                 11  |   -.001924   .0002559    -7.52   0.000    -.0024257   -.0014223
                     |
               _cons |   .0269272   .0023039    11.69   0.000     .0224112    .0314433
    -----------------+----------------------------------------------------------------
             sigma_u |  .01838454
             sigma_e |  .00901617
                 rho |  .80611808   (fraction of variance due to u_i)
    ----------------------------------------------------------------------------------
    Then my model without time dummies

    Code:
     . xtreg $ylist $xlist , fe vce(robust)
    
    Fixed-effects (within) regression               Number of obs     =     76,710
    Group variable: ID                              Number of groups  =     12,895
    
    R-sq:                                           Obs per group:
         within  = 0.2338                                         min =          1
         between = 0.2244                                         avg =        5.9
         overall = 0.2638                                         max =         46
    
                                                    F(26,12894)       =      52.71
    corr(u_i, Xb)  = 0.0224                         Prob > F          =     0.0000
    
                                        (Std. Err. adjusted for 12,895 clusters in ID)
    ----------------------------------------------------------------------------------
                     |               Robust
                  PD |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
               Women |  -.0021433   .0010889    -1.97   0.049    -.0042777   -8.82e-06
                 ROA |  -.1033834   .0059445   -17.39   0.000    -.1150355   -.0917312
                MTBt |   .0001104   .0000167     6.63   0.000     .0000777    .0001431
              LIQUID |  -.0002607   .0000901    -2.89   0.004    -.0004373   -.0000842
                SOLV |   .0068866   .0006663    10.34   0.000     .0055805    .0081926
               RISK1 |    .012754   .0005728    22.27   0.000     .0116312    .0138768
              MktCap |  -5.18e-09   6.75e-10    -7.68   0.000    -6.51e-09   -3.86e-09
                Inde |   .0017683   .0008672     2.04   0.041     .0000684    .0034682
         OtherBoards |   .0001932   .0001038     1.86   0.063    -.0000103    .0003966
               Bsize |  -.0004775    .000053    -9.01   0.000    -.0005814   -.0003736
                dGov |   .0012372   .0005022     2.46   0.014     .0002527    .0022217
              dAudit |  -1.80e-06   .0002154    -0.01   0.993    -.0004241    .0004205
               dComp |   .0000934   .0001928     0.48   0.628    -.0002845    .0004712
                dNom |  -.0014574   .0005306    -2.75   0.006    -.0024975   -.0004174
             InstOwn |  -.0213736   .0022335    -9.57   0.000    -.0257516   -.0169956
                 FCF |  -4.17e-08   9.68e-09    -4.31   0.000    -6.06e-08   -2.27e-08
             dEnergy |    -.00168   .0007594    -2.21   0.027    -.0031685   -.0001915
          dMaterials |  -.0005221   .0005387    -0.97   0.332     -.001578    .0005337
       dConsumerDisc |   .0025209    .000564     4.47   0.000     .0014154    .0036265
        dConsumerSta |  -.0001026   .0007424    -0.14   0.890    -.0015579    .0013527
         dHealthCare |   .0026983   .0007112     3.79   0.000     .0013042    .0040924
         dFinancials |  -.0000391    .003853    -0.01   0.992    -.0075915    .0075133
    dInformationTech |   .0030545   .0007851     3.89   0.000     .0015156    .0045933
              dComms |   .0003357   .0009567     0.35   0.726    -.0015396     .002211
          dUtilities |  -.0057208   .0007085    -8.07   0.000    -.0071095    -.004332
         dRealEstate |  -.0062761   .0021122    -2.97   0.003    -.0104163    -.002136
               _cons |   .0278123   .0023418    11.88   0.000      .023222    .0324026
    -----------------+----------------------------------------------------------------
             sigma_u |  .01851273
             sigma_e |  .00907152
                 rho |  .80637699   (fraction of variance due to u_i)
    ----------------------------------------------------------------------------------
    I have also tested using timeparm if the time dummies are significantly different:

    Code:
      testparm i.Time
    
     ( 1)  2.Time = 0
     ( 2)  3.Time = 0
     ( 3)  4.Time = 0
     ( 4)  5.Time = 0
     ( 5)  6.Time = 0
     ( 6)  7.Time = 0
     ( 7)  8.Time = 0
     ( 8)  9.Time = 0
     ( 9)  10.Time = 0
     (10)  11.Time = 0
    
           F( 10, 12894) =   38.22
                Prob > F =    0.0000

    What are your experiences with time dummies in panel data? Should they be included or not?

    Thanks in advance

  • #2
    Emil:
    in your second model the statistical significance of -female- is, at best, tenuous (p=0.049).
    Besides, looking at the 95% CIs of the same variable in both models, they do not look so different to me.
    Hence, I would stick with the regression code that includes -i.time- in the right-hand side of your regression equation.
    As a second thought (and stating that my last experience with corporate finance dates back to the last millennium), in my opinion it makes pefectly sense that, other things being equal, the probability of default is influenced/predicted by financial indicators, such as Return on Assets (ROA) and the like and that bosses' gender has a negligible role.
    THat said, I would be much more concerned about other topics that you do not seem to mention in your post:
    - is your model correctly specified (ie, does it give a true and far view of the data generating process)?
    - is -fe- the right specification for your regression model?
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment


    • #3
      Dear Carlo,

      Thank you for your reply.

      With regards to our questions:
      1) I believe my specifications are in order. How would you normally test for under/over identification?

      2) First I tested the pooled OLS vs RE with a Breusch Pagan test and secondly I tested RE vs FE using a Hausman test. Both were significant, why I ended up with FE.
      I have also applied robust standard errors due to my Wald test showed signs of heteroskedasticity.

      Comment


      • #4
        Emil:
        thanks for clarifying.
        About how to test your model specification, you may want to take a look at this thread: https://www.statalist.org/forums/for...ng-stata/page2, #22.
        Kind regards,
        Carlo
        (StataNow 18.5)

        Comment


        • #5
          Carlo:

          Running the test as you posted in the thread yields the following:

          Code:
          . xtreg $ylist $xlist i.Time, fe vce(robust)
          
          Fixed-effects (within) regression               Number of obs     =     76,710
          Group variable: ID                              Number of groups  =     12,895
          
          R-sq:                                           Obs per group:
               within  = 0.2433                                         min =          1
               between = 0.2360                                         avg =        5.9
               overall = 0.2757                                         max =         46
          
                                                          F(36,12894)       =      42.19
          corr(u_i, Xb)  = 0.0226                         Prob > F          =     0.0000
          
                                              (Std. Err. adjusted for 12,895 clusters in ID)
          ----------------------------------------------------------------------------------
                           |               Robust
                        PD |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
          -----------------+----------------------------------------------------------------
                     Women |  -.0011513    .001198    -0.96   0.337    -.0034996     .001197
                       ROA |   -.102301   .0060319   -16.96   0.000    -.1141244   -.0904776
                      MTBt |   .0001097   .0000167     6.57   0.000      .000077    .0001424
                    LIQUID |  -.0002312   .0000897    -2.58   0.010    -.0004069   -.0000554
                      SOLV |    .007016   .0006786    10.34   0.000     .0056859    .0083461
                     RISK1 |   .0176122    .000926    19.02   0.000     .0157971    .0194274
                    MktCap |  -5.00e-09   6.51e-10    -7.69   0.000    -6.28e-09   -3.73e-09
                      Inde |   .0022668    .000858     2.64   0.008      .000585    .0039486
               OtherBoards |   .0001514   .0001023     1.48   0.139    -.0000491    .0003519
                     Bsize |  -.0004402   .0000529    -8.33   0.000    -.0005439   -.0003366
                      dGov |   .0011423   .0004785     2.39   0.017     .0002044    .0020802
                    dAudit |   .0000593   .0002138     0.28   0.782    -.0003599    .0004784
                     dComp |    .000157   .0001896     0.83   0.408    -.0002146    .0005286
                      dNom |  -.0012808    .000506    -2.53   0.011    -.0022726   -.0002889
                   InstOwn |  -.0212428   .0022082    -9.62   0.000    -.0255713   -.0169144
                       FCF |  -3.85e-08   9.35e-09    -4.12   0.000    -5.68e-08   -2.02e-08
                   dEnergy |  -.0017655   .0007583    -2.33   0.020    -.0032519   -.0002792
                dMaterials |   -.000624   .0005299    -1.18   0.239    -.0016627    .0004146
             dConsumerDisc |   .0023597   .0005535     4.26   0.000     .0012748    .0034447
              dConsumerSta |   .0001703   .0007431     0.23   0.819    -.0012863    .0016268
               dHealthCare |   .0027769   .0007045     3.94   0.000      .001396    .0041578
               dFinancials |  -.0004171   .0037388    -0.11   0.911    -.0077456    .0069114
          dInformationTech |   .0030258   .0007783     3.89   0.000     .0015002    .0045514
                    dComms |   .0002314   .0009373     0.25   0.805    -.0016059    .0020686
                dUtilities |  -.0050889   .0007094    -7.17   0.000    -.0064794   -.0036985
               dRealEstate |  -.0060983   .0020713    -2.94   0.003    -.0101584   -.0020381
                           |
                      Time |
                        2  |  -.0041194   .0003411   -12.08   0.000     -.004788   -.0034509
                        3  |  -.0039076    .000284   -13.76   0.000    -.0044642    -.003351
                        4  |  -.0017163   .0001891    -9.08   0.000     -.002087   -.0013457
                        5  |  -.0023712   .0002102   -11.28   0.000    -.0027832   -.0019593
                        6  |  -.0010996   .0001915    -5.74   0.000     -.001475   -.0007242
                        7  |  -.0013153   .0002051    -6.41   0.000    -.0017172   -.0009133
                        8  |   -.001092   .0002049    -5.33   0.000    -.0014935   -.0006904
                        9  |  -.0015867    .000247    -6.42   0.000    -.0020708   -.0011026
                       10  |  -.0032568   .0002524   -12.90   0.000    -.0037515    -.002762
                       11  |   -.001924   .0002559    -7.52   0.000    -.0024257   -.0014223
                           |
                     _cons |   .0269272   .0023039    11.69   0.000     .0224112    .0314433
          -----------------+----------------------------------------------------------------
                   sigma_u |  .01838454
                   sigma_e |  .00901617
                       rho |  .80611808   (fraction of variance due to u_i)
          ----------------------------------------------------------------------------------
          
          . *testparm i.Time
          . predict fitted, xb
          (58,638 missing values generated)
          
          . g sq_fitted=fitted^2
          (58,638 missing values generated)
          
          . xtreg $ylist fitted sq_fitted , fe vce(robust)
          
          Fixed-effects (within) regression               Number of obs     =     76,710
          Group variable: ID                              Number of groups  =     12,895
          
          R-sq:                                           Obs per group:
               within  = 0.2652                                         min =          1
               between = 0.2504                                         avg =        5.9
               overall = 0.3035                                         max =         46
          
                                                          F(2,12894)        =     537.56
          corr(u_i, Xb)  = 0.0572                         Prob > F          =     0.0000
          
                                          (Std. Err. adjusted for 12,895 clusters in ID)
          ------------------------------------------------------------------------------
                       |               Robust
                    PD |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
          -------------+----------------------------------------------------------------
                fitted |   .7021101   .0813152     8.63   0.000     .5427202       .8615
             sq_fitted |   10.03006   4.111815     2.44   0.015     1.970291    18.08982
                 _cons |    .001003   .0002139     4.69   0.000     .0005837    .0014224
          -------------+----------------------------------------------------------------
               sigma_u |  .01822713
               sigma_e |  .00888251
                   rho |  .80809114   (fraction of variance due to u_i)
          ------------------------------------------------------------------------------
          
          . test sq_fitted=0
          
           ( 1)  sq_fitted = 0
          
                 F(  1, 12894) =    5.95
                      Prob > F =    0.0147
          Does this mean that my model is misspecified? If yes, how can I correct it?

          Comment


          • #6
            Emil:
            yes it is.
            Usually, misspecification is due to missing squared terms and/or interactions or forgotten predictors.
            In other cases it may be a sign of endogeneity.
            Check if any of the above affects your regression model.
            Kind regards,
            Carlo
            (StataNow 18.5)

            Comment


            • #7
              Carlo:

              Ok, thank you.
              Frankly, I am unsure which of my variables should be a squared term (or the likes).
              With regards to endogeneity, I have a suspicion that there is a problem of reverse causality in the model.

              Do you have any "magical econometrical tricks" that I can use?

              Comment


              • #8
                Emil:
                sorry, no.
                However, my first attempt would consider starting with a more parsimonious model and see what happens, both in terms of results and postestimation.
                That said, I would take a look at the literature in yiour research field and see what others did in the past when presented with the same research topic.
                Kind regards,
                Carlo
                (StataNow 18.5)

                Comment

                Working...
                X