Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpretation of Negative Binomial Regression Model with Panel Data

    Dear All,

    I am using Stata 14 and investigating the impact of Corporate Venture Capital Investment on the Innovation performance of corporates. For my study, I am using unbalanced panel data as my dataset consists of around 70 firms in a time period of 8 years.

    My dependent variable is the number of patents, measured as a count variable. Since, it is overdispersed i have decided to run
    HTML Code:
    xtnbreg EcoPatents Revenue RandD ROA CVCDeals i.Industry i.Year, re
    My results look as follows

    HTML Code:
    Random-effects negative binomial regression     Number of obs     =        485
    Group variable: id                              Number of groups  =         72
    
    Random effects u_i ~ Beta                       Obs per group:
                                                                  min =          2
                                                                  avg =        6.7
                                                                  max =          8
    
                                                    Wald chi2(19)     =     488.06
    Log likelihood  = -2051.3666                    Prob > chi2       =     0.0000
    
    ----------------------------------------------------------------------------------------------
                      EcoPatents |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                         Revenue |   .0021823   .0010251     2.13   0.033     .0001731    .0041915
                           RandD |   .0045523   .0017063     2.67   0.008      .001208    .0078967
                             ROA |  -.1024272   .5633483    -0.18   0.856     -1.20657    1.001715
                        CVCDeals |   .0200437   .0084855     2.36   0.018     .0034125     .036675
                 InvestmentStage |   .1869527   .0915727     2.04   0.041     .0074736    .3664319
                                 |
    c.CVCDeals#c.InvestmentStage |  -.0257762   .0134832    -1.91   0.056    -.0522029    .0006505
                                 |
                        Industry |
                              2  |  -.7948941   .5029193    -1.58   0.114    -1.780598    .1908096
                              3  |  -.1072463   .5006072    -0.21   0.830    -1.088418    .8739257
                              4  |  -1.631532   .4985119    -3.27   0.001    -2.608597   -.6544667
                              5  |  -.2224191   .7265788    -0.31   0.760    -1.646487    1.201649
                              6  |  -.7628642   .6077591    -1.26   0.209     -1.95405    .4283218
                              7  |  -.2909924   .8854289    -0.33   0.742    -2.026401    1.444416
                                 |
                            Year |
                           2011  |  -.0415641   .0717578    -0.58   0.562    -.1822067    .0990785
                           2012  |  -.0477043   .0709135    -0.67   0.501    -.1866922    .0912836
                           2013  |  -.3043772   .0768562    -3.96   0.000    -.4550125   -.1537418
                           2014  |  -.4286997   .0780602    -5.49   0.000    -.5816949   -.2757045
                           2015  |  -.5881658   .0835155    -7.04   0.000    -.7518532   -.4244785
                           2016  |  -1.086586   .0935873   -11.61   0.000    -1.270014   -.9031582
                           2017  |  -2.294929   .1353113   -16.96   0.000    -2.560134   -2.029724
                                 |
                           _cons |   2.404181   .4972169     4.84   0.000     1.429654    3.378708
    -----------------------------+----------------------------------------------------------------
                           /ln_r |  -.2576163   .1521891                     -.5559014    .0406688
                           /ln_s |   .7930667   .2019342                      .3972831     1.18885
    -----------------------------+----------------------------------------------------------------
                               r |   .7728917   .1176257                       .573555    1.041507
                               s |   2.210164   .4463076                      1.487777    3.283305
    ----------------------------------------------------------------------------------------------
    LR test vs. pooled: chibar2(01) = 857.82               Prob >= chibar2 = 0.000

    Currently, I am struggling to interpret the coefficients of the negative binomial regression output.
    Can anyone help with the interpretation of the coefficients CVCDeals (number of Deals), InvestmentStage (continuous variable between 0 and 1) and the interaction term c.CVCDeals#c.InvestmentStage? In particular, I would like to understand how much % the dependent variable changes with an increase of the independent variable.

    Any help is greatly appreciated!

    Best,
    Ben
    Last edited by Ben Koch; 17 Nov 2019, 11:47.

  • #2
    The margins command is the easiest way to do this.

    Comment


    • #3
      Dear Phil,

      Thank you very much for your reply.

      Richard Williams' presentation about the Margins Command,https://www3.nd.edu/~rwilliam/stats/Margins01.pdf, (Thanks to Clyde for bringing up this reference in an other thread), helped me to better understand the output of a margins command. Nevertheless, he has not discussed the application of the margins command in a negative binomial regression. Since, this is my first time working with the margins command I have 2 further questions:
      1. Am I using the correct command?
      2. How do I interpret the margins command for the xtnbreg. Is it correct to say that "the probability that a firm has one more Ecopatent inceases by 0.00564 as CVCDeals increases by one"?
      Code:
      . margins, dydx(*)
      
      Average marginal effects                        Number of obs     =        485
      Model VCE    : OIM
      
      Expression   : Linear prediction, predict()
      dy/dx w.r.t. : Revenue RandD ROA CVCDeals InvestmentStage 2.Industry 3.Industry 4.Industry 5.Industry 6.Industry 7.Industry 2011.Year 2012.Year
                     2013.Year 2014.Year 2015.Year 2016.Year 2017.Year
      
      ---------------------------------------------------------------------------------
                      |            Delta-method
                      |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
      ----------------+----------------------------------------------------------------
              Revenue |   .0021823   .0010251     2.13   0.033     .0001731    .0041915
                RandD |   .0045523   .0017063     2.67   0.008      .001208    .0078967
                  ROA |  -.1024272   .5633483    -0.18   0.856     -1.20657    1.001715
             CVCDeals |   .0056405   .0042194     1.34   0.181    -.0026293    .0139103
      InvestmentStage |   .0085389   .0943034     0.09   0.928    -.1762924    .1933702
                      |
             Industry |
                   2  |  -.7948941   .5029193    -1.58   0.114    -1.780598    .1908096
                   3  |  -.1072463   .5006072    -0.21   0.830    -1.088418    .8739257
                   4  |  -1.631532   .4985119    -3.27   0.001    -2.608597   -.6544667
                   5  |  -.2224191   .7265788    -0.31   0.760    -1.646487    1.201649
                   6  |  -.7628642   .6077591    -1.26   0.209     -1.95405    .4283218
                   7  |  -.2909924   .8854289    -0.33   0.742    -2.026401    1.444416
                      |
                 Year |
                2011  |  -.0415641   .0717578    -0.58   0.562    -.1822067    .0990785
                2012  |  -.0477043   .0709135    -0.67   0.501    -.1866922    .0912836
                2013  |  -.3043772   .0768562    -3.96   0.000    -.4550125   -.1537418
                2014  |  -.4286997   .0780602    -5.49   0.000    -.5816949   -.2757045
                2015  |  -.5881658   .0835155    -7.04   0.000    -.7518532   -.4244785
                2016  |  -1.086586   .0935873   -11.61   0.000    -1.270014   -.9031582
                2017  |  -2.294929   .1353113   -16.96   0.000    -2.560134   -2.029724
      ---------------------------------------------------------------------------------
      Note: dy/dx for factor levels is the discrete change from the base level.

      Many thanks for your patience and your support

      Best,
      Ben
      Last edited by Ben Koch; 18 Nov 2019, 12:19.

      Comment


      • #4
        Dear Statalist users,

        to follow up on my last question, I am still not sure whether I am able to use the simple margin command for a negative binomial regression model. Currently, I am trying to use the IRR coefficients in order to interpret by coefficients. What exactly is the difference between the margins and IRR coefficient?
        I would be also very grateful for any answers concerning my previous question..

        I appreciate all your support!

        Best,
        Marko

        Comment

        Working...
        X