Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • mlogit/mprobit: Standard error for marginal effect on combination of outcomes

    Dear statalist users,

    when estimating a multinomial logit or probit model for a dependent variable with multiple outcomes, one can calculate the marginal effect on a combination of outcomes, e.g., the marginal effect on "either outcome 1 or outcome 2", as the sum of the marginal effect on outcome 1 and the marginal effect on outcome 2, since the outcomes are mutually exclusive.

    But how would one calculate the standard error for the marginal effect on "either outcome 1 or outcome 2"? Or is there another way to calculate the marginal effect on the joint probability of more than one outcome?

    Any help is greatly appreciated!

  • #2
    Is this what you want? If so, do

    findit spost13_ado

    and install it to get mlincom and other great commands.

    Code:
    webuse nhanes2f, clear
    mlogit health weight
    margins, post
    mlincom 1+2, stat(e se z p ll ul) dec(5)
    Here is the output:

    Code:
    . webuse nhanes2f, clear
    
    . mlogit health weight, nolog
    
    Multinomial logistic regression                 Number of obs     =     10,335
                                                    LR chi2(4)        =      18.98
                                                    Prob > chi2       =     0.0008
    Log likelihood = -15754.909                     Pseudo R2         =     0.0006
    
    ------------------------------------------------------------------------------
          health |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    poor         |
          weight |   .0049858   .0026369     1.89   0.059    -.0001825    .0101541
           _cons |  -1.755365   .1965752    -8.93   0.000    -2.140645   -1.370085
    -------------+----------------------------------------------------------------
    fair         |
          weight |   .0040704   .0019692     2.07   0.039     .0002108    .0079299
           _cons |  -.8596221   .1460849    -5.88   0.000    -1.145943    -.573301
    -------------+----------------------------------------------------------------
    average      |  (base outcome)
    -------------+----------------------------------------------------------------
    good         |
          weight |  -.0011393   .0017626    -0.65   0.518    -.0045939    .0023153
           _cons |  -.0439027   .1293509    -0.34   0.734    -.2974257    .2096203
    -------------+----------------------------------------------------------------
    excellent    |
          weight |    -.00358   .0018124    -1.98   0.048    -.0071322   -.0000277
           _cons |   .0566302   .1323952     0.43   0.669    -.2028596    .3161199
    ------------------------------------------------------------------------------
    
    . margins, post
    
    Predictive margins                              Number of obs     =     10,335
    Model VCE    : OIM
    
    1._predict   : Pr(health==poor), predict(pr outcome(1))
    2._predict   : Pr(health==fair), predict(pr outcome(2))
    3._predict   : Pr(health==average), predict(pr outcome(3))
    4._predict   : Pr(health==good), predict(pr outcome(4))
    5._predict   : Pr(health==excellent), predict(pr outcome(5))
    
    ------------------------------------------------------------------------------
                 |            Delta-method
                 |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        _predict |
              1  |    .070537   .0025181    28.01   0.000     .0656017    .0754723
              2  |   .1615868   .0036191    44.65   0.000     .1544935    .1686801
              3  |   .2842767    .004437    64.07   0.000     .2755804    .2929731
              4  |   .2507015   .0042632    58.81   0.000     .2423459    .2590571
              5  |   .2328979   .0041559    56.04   0.000     .2247524    .2410434
    ------------------------------------------------------------------------------
    
    . mlincom 1+2, stat(e se z p ll ul) dec(5)
    
                 |   lincom        se    zvalue    pvalue        ll        ul 
    -------------+------------------------------------------------------------
               1 |  0.23212   0.00415  55.93531   0.00000   0.22399   0.24026 
    
    .
    You can probably do this without spost13 but spost13 makes it easier.
    -------------------------------------------
    Richard Williams, Notre Dame Dept of Sociology
    StataNow Version: 18.5 MP (2 processor)

    EMAIL: [email protected]
    WWW: https://www3.nd.edu/~rwilliam

    Comment


    • #3
      Dear Richard, this is exactly what I was looking for, thank you so much!

      Comment

      Working...
      X