Hi Guys. OK, i finally figure out how to make post organized!
i have one question regarding the multinomial logit regression. Below you can first find my model and then the empirical result. you can see for i.wsd variable (the dummy variable with 0 and 1), the coefficient for outcome 3 is negative and it is significant at 90% level (some may say it is not a significant level anymore). this means (if i am right) compared with outcome 3, with the wsd changes from 0 to 1, the probability of outcome 1 becomes bigger while the probability of outcome 3 becomes smaller. However, when i use the "mtabel" command to calculate the predicted probability, i find the probability of outcome 3 increase, though only a little bit. I am really confused about how to explain this. Is there anything wrong? i find this post but don't think it is very relevant to the question here: https://www.statalist.org/forums/for...etation-method. Thanks in advance.
i have one question regarding the multinomial logit regression. Below you can first find my model and then the empirical result. you can see for i.wsd variable (the dummy variable with 0 and 1), the coefficient for outcome 3 is negative and it is significant at 90% level (some may say it is not a significant level anymore). this means (if i am right) compared with outcome 3, with the wsd changes from 0 to 1, the probability of outcome 1 becomes bigger while the probability of outcome 3 becomes smaller. However, when i use the "mtabel" command to calculate the predicted probability, i find the probability of outcome 3 increase, though only a little bit. I am really confused about how to explain this. Is there anything wrong? i find this post but don't think it is very relevant to the question here: https://www.statalist.org/forums/for...etation-method. Thanks in advance.
Code:
mlogit pi ternorv ternorc cumu10mid politydif i.wsd powdif salience leaage oppleaage i.milnoncombat /// i.combat i.rebel bsuc_sum rsuc_sum tsuc_sum bsuc_sum_opp rsuc_sum_opp tsuc_sum_opp, cluster(ccode) base(1) Multinomial logistic regression Number of obs = 261 Wald chi2(36) = 270.86 Prob > chi2 = 0.0000 Log pseudolikelihood = -248.98639 Pseudo R2 = 0.1185 (Std. Err. adjusted for 78 clusters in ccode) -------------------------------------------------------------------------------- | Robust pi | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- 1 | (base outcome) ---------------+---------------------------------------------------------------- 2 | ternorv | .2401438 .5514606 0.44 0.663 -.8406992 1.320987 ternorc | .1888044 .4593973 0.41 0.681 -.7115979 1.089207 cumu10mid | -.0344206 .0909131 -0.38 0.705 -.2126071 .1437658 politydif | .0150453 .0309368 0.49 0.627 -.0455897 .0756802 1.wsd | -1.230385 .400907 -3.07 0.002 -2.016149 -.444622 powdif | -.5573728 5.237646 -0.11 0.915 -10.82297 9.708224 salience | -.0212136 .131619 -0.16 0.872 -.279182 .2367548 leaage | -.0000551 .0000854 -0.64 0.519 -.0002225 .0001124 oppleaage | -.0000478 .0000865 -0.55 0.580 -.0002173 .0001216 1.milnoncombat | -.7916929 .5950595 -1.33 0.183 -1.957988 .3746023 1.combat | -.3480807 .4898449 -0.71 0.477 -1.308159 .6119975 1.rebel | -1.026594 .3696071 -2.78 0.005 -1.751011 -.3021775 bsuc_sum | -.4019039 .1352459 -2.97 0.003 -.666981 -.1368268 rsuc_sum | -.1221266 .2577125 -0.47 0.636 -.6272338 .3829806 tsuc_sum | .1642505 .361909 0.45 0.650 -.5450782 .8735791 bsuc_sum_opp | -.7478829 .5317541 -1.41 0.160 -1.790102 .2943359 rsuc_sum_opp | .6970344 .4731081 1.47 0.141 -.2302404 1.624309 tsuc_sum_opp | .2248461 .6275107 0.36 0.720 -1.005052 1.454744 _cons | 1.987506 1.528682 1.30 0.194 -1.008656 4.983668 ---------------+---------------------------------------------------------------- 3 | ternorv | .568666 .5244716 1.08 0.278 -.4592795 1.596611 ternorc | .0261033 .3941644 0.07 0.947 -.7464448 .7986513 cumu10mid | .1036039 .1016358 1.02 0.308 -.0955985 .3028063 politydif | -.0107027 .0412228 -0.26 0.795 -.0914979 .0700925 1.wsd | -.7415701 .4303823 -1.72 0.085 -1.585104 .1019637 powdif | -2.601234 6.200299 -0.42 0.675 -14.7536 9.551129 salience | .0068077 .1127426 0.06 0.952 -.2141637 .2277792 leaage | -.0001791 .0001116 -1.61 0.108 -.0003978 .0000396 oppleaage | .000015 .0000939 0.16 0.873 -.000169 .0001989 1.milnoncombat | -1.273212 .5989447 -2.13 0.034 -2.447122 -.0993023 1.combat | -.2542086 .4880725 -0.52 0.602 -1.210813 .7023959 1.rebel | -.9614701 .4152078 -2.32 0.021 -1.775262 -.1476779 bsuc_sum | -.9121091 .3425758 -2.66 0.008 -1.583545 -.2406729 rsuc_sum | .3445298 .3724609 0.93 0.355 -.3854802 1.07454 tsuc_sum | .2300749 .4050782 0.57 0.570 -.5638637 1.024014 bsuc_sum_opp | .2071136 .5183295 0.40 0.689 -.8087934 1.223021 rsuc_sum_opp | -.0990741 .539271 -0.18 0.854 -1.156026 .9578777 tsuc_sum_opp | -.3641798 .6610856 -0.55 0.582 -1.659884 .9315241 _cons | 1.100974 1.507687 0.73 0.465 -1.854039 4.055986 -------------------------------------------------------------------------------- mtable, at(wsd=(0 1) milnoncombat=0 combat=0 rebel=0 ) atmeans outcome (1 3) statistics(ci) dec(2) Expression: Pr(pi), predict(outcome()) | wsd 1 3 ----------+----------------------------- Pr(y) | 0 0.08 0.36 ll | 0 0.02 0.24 ul | 0 0.14 0.49 Pr(y) | 1 0.19 0.42 ll | 1 0.08 0.26 ul | 1 0.29 0.58
Comment