Hello,
I'm estimating a TFP growth convergence regression type model in a panel with 20 NUTS-2 regions (reg) and N=17, from 1995 to 2012.
I've estimated the model with POLS (clustering by reg), FE (clustering by NUTS-1 geo1 area, i.e. North-west, North East, Centre and South), and RE.
My questions are:
1) I get similar results between POLS and RE. I've read previous posts on this issue, and I guess this is because my dependent variable is in difference. Or is it also due to limited between variability in the data. I've included an xtsum below, however some of the variable show high between variability. Please I'm not clear on this point.
2) The tests below also show that I should go for FE. Is this correct?
Thanks a lot.
These are my POLS FE and RE estimation codes and results:
#
I've also used the same estimation methods without robust in order to get the results to choose the proprer one. These are the results:
#
This is the xtsum:
#
I'm estimating a TFP growth convergence regression type model in a panel with 20 NUTS-2 regions (reg) and N=17, from 1995 to 2012.
I've estimated the model with POLS (clustering by reg), FE (clustering by NUTS-1 geo1 area, i.e. North-west, North East, Centre and South), and RE.
My questions are:
1) I get similar results between POLS and RE. I've read previous posts on this issue, and I guess this is because my dependent variable is in difference. Or is it also due to limited between variability in the data. I've included an xtsum below, however some of the variable show high between variability. Please I'm not clear on this point.
2) The tests below also show that I should go for FE. Is this correct?
Thanks a lot.
These are my POLS FE and RE estimation codes and results:
#
Code:
xi: xtreg gtfp_100 lagltfp_rel_lev95 lagdettotoccrfl lagnetai lagpsii lagnetae lagpsie /// lagrspri_stock_va lagtotroadskms tau1995-tau2012 i.geo1 /// if cod_reg<21 , vce(cluster reg) i.geo1 _Igeo1_1-4 (_Igeo1_1 for geo1==Centro omitted) note: tau1995 omitted because of collinearity note: tau2012 omitted because of collinearity Random-effects GLS regression Number of obs = 340 Group variable: cod_reg Number of groups = 20 R-sq: within = 0.6088 Obs per group: min = 17 between = 0.2743 avg = 17.0 overall = 0.6005 max = 17 Wald chi2(19) = . corr(u_i, X) = 0 (assumed) Prob > chi2 = . (Std. Err. adjusted for 20 clusters in reg) ----------------------------------------------------------------------------------- | Robust gtfp_100 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- lagltfp_rel_lev95 | -.04525 .0178226 -2.54 0.011 -.0801817 -.0103184 lagdettotoccrfl | -.0940007 .0516523 -1.82 0.069 -.1952374 .007236 lagnetai | -.0144664 .0082807 -1.75 0.081 -.0306964 .0017635 lagpsii | .011355 .0316344 0.36 0.720 -.0506473 .0733574 lagnetae | .0014869 .006694 0.22 0.824 -.0116331 .0146069 lagpsie | -.0566569 .0332526 -1.70 0.088 -.1218307 .0085169 lagrspri_stock_va | .0000626 .0006108 0.10 0.918 -.0011346 .0012598 lagtotroadskms | .0053038 .0036947 1.44 0.151 -.0019376 .0125452 tau1995 | 0 (omitted) tau1996 | .0251443 .003433 7.32 0.000 .0184157 .0318728 tau1997 | .0282562 .0043658 6.47 0.000 .0196994 .036813 tau1998 | .0249205 .0036223 6.88 0.000 .017821 .03202 tau1999 | .0308059 .0043438 7.09 0.000 .0222922 .0393196 tau2000 | .0397295 .0053952 7.36 0.000 .029155 .0503039 tau2001 | .0232508 .005381 4.32 0.000 .0127043 .0337972 tau2002 | .0056954 .0059057 0.96 0.335 -.0058796 .0172705 tau2003 | .0090072 .0066685 1.35 0.177 -.0040628 .0220772 tau2004 | .0257581 .004193 6.14 0.000 .01754 .0339763 tau2005 | .0195458 .0042295 4.62 0.000 .0112561 .0278355 tau2006 | .0227237 .0039394 5.77 0.000 .0150026 .0304447 tau2007 | .0216878 .0037919 5.72 0.000 .0142557 .0291198 tau2008 | .0013876 .0042288 0.33 0.743 -.0069007 .009676 tau2009 | -.025776 .0030627 -8.42 0.000 -.0317788 -.0197732 tau2010 | .0301896 .0056313 5.36 0.000 .0191525 .0412267 tau2011 | .0166942 .0038948 4.29 0.000 .0090605 .0243279 tau2012 | 0 (omitted) _Igeo1_2 | -.0012142 .0019681 -0.62 0.537 -.0050716 .0026431 _Igeo1_3 | -.0031313 .0028951 -1.08 0.279 -.0088056 .002543 _Igeo1_4 | -.0062082 .0037191 -1.67 0.095 -.0134974 .0010811 _cons | .0355761 .0402259 0.88 0.376 -.0432652 .1144173 ------------------+---------------------------------------------------------------- sigma_u | 0 sigma_e | .01185219 rho | 0 (fraction of variance due to u_i) ----------------------------------------------------------------------------------- xtreg gtfp_100 lagltfp_rel_lev95 lagdettotoccrfl lagnetai lagpsii lagnetae lagpsie /// lagrspri_stock_va lagtotroadskms /// tau1995-tau2012 /// if cod_reg<21 , vce(cluster geo1) fe note: tau1995 omitted because of collinearity note: tau2012 omitted because of collinearity Fixed-effects (within) regression Number of obs = 340 Group variable: cod_reg Number of groups = 20 R-sq: within = 0.6611 Obs per group: min = 17 between = 0.0470 avg = 17.0 overall = 0.1783 max = 17 F(3,3) = . corr(u_i, Xb) = -0.8272 Prob > F = . (Std. Err. adjusted for 4 clusters in geo1) ----------------------------------------------------------------------------------- | Robust gtfp_100 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- lagltfp_rel_lev95 | -.3010526 .0451169 -6.67 0.007 -.4446346 -.1574707 lagdettotoccrfl | -.0210583 .1237399 -0.17 0.876 -.414854 .3727375 lagnetai | .0117222 .0296807 0.39 0.719 -.0827351 .1061794 lagpsii | .048451 .0132737 3.65 0.035 .0062082 .0906938 lagnetae | .0238814 .0094674 2.52 0.086 -.0062481 .0540109 lagpsie | -.0255698 .0479345 -0.53 0.631 -.1781187 .126979 lagrspri_stock_va | .003575 .000634 5.64 0.011 .0015572 .0055928 lagtotroadskms | .0138893 .0075632 1.84 0.164 -.0101802 .0379588 tau1995 | 0 (omitted) tau1996 | .0602008 .008763 6.87 0.006 .0323128 .0880887 tau1997 | .0673868 .0051916 12.98 0.001 .0508649 .0839088 tau1998 | .0629318 .0064116 9.82 0.002 .0425271 .0833365 tau1999 | .0665205 .0052882 12.58 0.001 .049691 .0833499 tau2000 | .0746015 .0103181 7.23 0.005 .0417646 .1074384 tau2001 | .0585666 .0081672 7.17 0.006 .0325748 .0845584 tau2002 | .0425568 .0071275 5.97 0.009 .019874 .0652397 tau2003 | .0389972 .0106292 3.67 0.035 .0051705 .072824 tau2004 | .0509879 .0076617 6.65 0.007 .0266048 .0753709 tau2005 | .0442269 .007049 6.27 0.008 .0217939 .06666 tau2006 | .0460886 .0057566 8.01 0.004 .0277686 .0644086 tau2007 | .0434926 .0064391 6.75 0.007 .0230006 .0639846 tau2008 | .021933 .0079666 2.75 0.071 -.0034205 .0472864 tau2009 | -.0124006 .0024856 -4.99 0.015 -.0203108 -.0044903 tau2010 | .0305118 .0096626 3.16 0.051 -.0002389 .0612624 tau2011 | .0185516 .007333 2.53 0.085 -.0047853 .0418885 tau2012 | 0 (omitted) _cons | -.1294257 .0594517 -2.18 0.118 -.3186275 .0597761 ------------------+---------------------------------------------------------------- sigma_u | .02448668 sigma_e | .01185219 rho | .81018832 (fraction of variance due to u_i) ----------------------------------------------------------------------------------- xi: xtreg gtfp_100 lagltfp_rel_lev95 lagdettotoccrfl lagnetai lagpsii lagnetae lagpsie /// lagrspri_stock_va lagtotroadskms /// tau1995-tau2012 i.geo1 /// if cod_reg<21, robust re i.geo1 _Igeo1_1-4 (_Igeo1_1 for geo1==Centro omitted) note: tau1995 omitted because of collinearity note: tau2012 omitted because of collinearity Random-effects GLS regression Number of obs = 340 Group variable: cod_reg Number of groups = 20 R-sq: within = 0.6088 Obs per group: min = 17 between = 0.2743 avg = 17.0 overall = 0.6005 max = 17 Wald chi2(19) = . corr(u_i, X) = 0 (assumed) Prob > chi2 = . (Std. Err. adjusted for 20 clusters in cod_reg) ----------------------------------------------------------------------------------- | Robust gtfp_100 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- lagltfp_rel_lev95 | -.04525 .0178226 -2.54 0.011 -.0801817 -.0103184 lagdettotoccrfl | -.0940007 .0516523 -1.82 0.069 -.1952374 .007236 lagnetai | -.0144664 .0082807 -1.75 0.081 -.0306964 .0017635 lagpsii | .011355 .0316344 0.36 0.720 -.0506473 .0733574 lagnetae | .0014869 .006694 0.22 0.824 -.0116331 .0146069 lagpsie | -.0566569 .0332526 -1.70 0.088 -.1218307 .0085169 lagrspri_stock_va | .0000626 .0006108 0.10 0.918 -.0011346 .0012598 lagtotroadskms | .0053038 .0036947 1.44 0.151 -.0019376 .0125452 tau1995 | 0 (omitted) tau1996 | .0251443 .003433 7.32 0.000 .0184157 .0318728 tau1997 | .0282562 .0043658 6.47 0.000 .0196994 .036813 tau1998 | .0249205 .0036223 6.88 0.000 .017821 .03202 tau1999 | .0308059 .0043438 7.09 0.000 .0222922 .0393196 tau2000 | .0397295 .0053952 7.36 0.000 .029155 .0503039 tau2001 | .0232508 .005381 4.32 0.000 .0127043 .0337972 tau2002 | .0056954 .0059057 0.96 0.335 -.0058796 .0172705 tau2003 | .0090072 .0066685 1.35 0.177 -.0040628 .0220772 tau2004 | .0257581 .004193 6.14 0.000 .01754 .0339763 tau2005 | .0195458 .0042295 4.62 0.000 .0112561 .0278355 tau2006 | .0227237 .0039394 5.77 0.000 .0150026 .0304447 tau2007 | .0216878 .0037919 5.72 0.000 .0142557 .0291198 tau2008 | .0013876 .0042288 0.33 0.743 -.0069007 .009676 tau2009 | -.025776 .0030627 -8.42 0.000 -.0317788 -.0197732 tau2010 | .0301896 .0056313 5.36 0.000 .0191525 .0412267 tau2011 | .0166942 .0038948 4.29 0.000 .0090605 .0243279 tau2012 | 0 (omitted) _Igeo1_2 | -.0012142 .0019681 -0.62 0.537 -.0050716 .0026431 _Igeo1_3 | -.0031313 .0028951 -1.08 0.279 -.0088056 .002543 _Igeo1_4 | -.0062082 .0037191 -1.67 0.095 -.0134974 .0010811 _cons | .0355761 .0402259 0.88 0.376 -.0432652 .1144173 ------------------+---------------------------------------------------------------- sigma_u | 0 sigma_e | .01185219 rho | 0 (fraction of variance due to u_i) -----------------------------------------------------------------------------------
#
Code:
1) F test that all u_i=0: F(19, 296) = 3.35 Prob > F = 0.0000 2) xttest0 Breusch and Pagan Lagrangian multiplier test for random effects gtfp_100[cod_reg,t] = Xb + u[cod_reg] + e[cod_reg,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- gtfp_100 | .0003688 .0192045 e | .0001405 .0118522 u | 0 0 Test: Var(u) = 0 chibar2(01) = 0.00 Prob > chibar2 = 1.0000 3) hausman FE RE , sigmamore Note: the rank of the differenced variance matrix (8) does not equal the number of coefficients being tested (24); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | FE RE Difference S.E. -------------+---------------------------------------------------------------- lagltfp_r~95 | -.3010526 -.04525 -.2558026 .0405769 lagdettoto~l | -.0210583 -.0940007 .0729425 .0689508 lagnetai | .0117222 -.0144664 .0261886 .0158818 lagpsii | .048451 .011355 .037096 .0283857 lagnetae | .0238814 .0014869 .0223945 .0222148 lagpsie | -.0255698 -.0566569 .031087 .0484602 lagrspri_s~a | .003575 .0000626 .0035124 .0023246 lagtotroad~s | .0138893 .0053038 .0085855 .0118428 tau1996 | .0602008 .0251443 .0350565 .0069425 tau1997 | .0673868 .0282562 .0391306 .0061284 tau1998 | .0629318 .0249205 .0380113 .0060186 tau1999 | .0665205 .0308059 .0357146 .0058911 tau2000 | .0746015 .0397295 .034872 .0060373 tau2001 | .0585666 .0232508 .0353158 .0066595 tau2002 | .0425568 .0056954 .0368614 .0059096 tau2003 | .0389972 .0090072 .0299901 .0051444 tau2004 | .0509879 .0257581 .0252297 .0043123 tau2005 | .0442269 .0195458 .0246811 .0044523 tau2006 | .0460886 .0227237 .0233649 .0039436 tau2007 | .0434926 .0216878 .0218048 .0037612 tau2008 | .021933 .0013876 .0205453 .0035564 tau2009 | -.0124006 -.025776 .0133755 .0025573 tau2010 | .0305118 .0301896 .0003222 .000566 tau2011 | .0185516 .0166942 .0018574 .0005124 ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(8) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 46.11 Prob>chi2 = 0.0000 (V_b-V_B is not positive definite)
#
Code:
xtsum gtfp_100 lagltfp_rel_lev95 lagdettotoccrfl lagnetai lagpsii lagnetae lagpsie /// lagrspri_stock_va lagtotroadskms if cod_reg<21 Variable | Mean Std. Dev. Min Max | Observations -----------------+--------------------------------------------+---------------- gtfp_100 overall | -.0090632 .0192045 -.0827193 .0452053 | N = 340 between | .002689 -.01442 -.0049467 | n = 20 within | .0190242 -.0802943 .0410888 | T = 17 | | laglt~95 overall | -.0750882 .0964169 -.3628312 .1190492 | N = 340 between | .0834291 -.2464719 .080493 | n = 20 within | .0516171 -.2183106 .0482665 | T = 17 | | lagdet~l overall | .0978757 .0232197 .0589524 .1836198 | N = 340 between | .0211351 .0666674 .149588 | n = 20 within | .0106559 .0645574 .1319075 | T = 17 | | lagnetai overall | .4892074 .1627707 .233325 1.23396 | N = 340 between | .1571984 .2725485 .928585 | n = 20 within | .0543073 .2613606 .7945828 | T = 17 | | lagpsii overall | 1.089251 .032663 1.00995 1.179449 | N = 340 between | .0264269 1.045245 1.145038 | n = 20 within | .0200364 1.018452 1.167375 | T = 17 | | lagnetae overall | .4741275 .1603552 .2287767 .9504244 | N = 340 between | .1582435 .2668897 .790624 | n = 20 within | .0430657 .3174492 .6424334 | T = 17 | | lagpsie overall | 1.101113 .0261305 1.034469 1.17758 | N = 340 between | .0217327 1.068396 1.148636 | n = 20 within | .0152572 1.060608 1.155469 | T = 17 | | lagrspr~ overall | 2.16662 2.037671 .0784046 10.12346 | N = 340 between | 2.04059 .1297701 8.967184 | n = 20 within | .4296822 .9524957 3.921881 | T = 17 | | lagtot~s overall | .599534 .1451635 .2292234 .992353 | N = 340 between | .1359085 .2333248 .8243992 | n = 20 within | .0589331 .4515679 .9143746 | T = 17
Comment