Guest:
sorry, but I'm still not clear with what you're after.
sorry, but I'm still not clear with what you're after.
TACit/Ai,t-1 = β0 (1/Ai,t-1) + β1 (ΔREVit/Ai,t-1) + β2 (PPEit/Ai,t-1)+ ԑit
<depvar>=<indepvars> <controlsifany>
TACit/Ai,t-1 = β0 (1/Ai,t-1) + β1 ((ΔSalesit-ΔARit)/Ai,t-1) + β2 (PPEit/Ai,t-1)+ β3 ROA (i, t-1)+ ԑit
xtreg ACCTT varCA_CClts IMMOB Lag_ROA, fe Fixed-effects (within) regression Number of obs = 228 Group variable: i Number of groups = 38 R-sq: Obs per group: within = 0.0418 min = 6 between = 0.2677 avg = 6.0 overall = 0.0531 max = 6 F(3,187) = 2.72 corr(u_i, Xb) = -0.8667 Prob > F = 0.0457 ------------------------------------------------------------------------------ ACCTT | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- varCA_CClts | -.0782775 .0568273 -1.38 0.170 -.1903824 .0338274 IMMOB | .1373683 .0729324 1.88 0.061 -.0065077 .2812444 Lag_ROA | .2490675 .1757287 1.42 0.158 -.0975979 .5957329 _cons | -.1148862 .0420693 -2.73 0.007 -.1978776 -.0318948 -------------+---------------------------------------------------------------- sigma_u | .11087529 sigma_e | .09420287 rho | .58076406 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(37, 187) = 1.71 Prob > F = 0.0112
xtreg ACCTT varCA_CClts IMMOB i.année, fe
testparm i.année ( 1) 2013.année = 0 ( 2) 2014.année = 0 ( 3) 2015.année = 0 ( 4) 2016.année = 0 ( 5) 2017.année = 0 F( 5, 183) = 1.25 Prob > F = 0.2898
xtreg ACCTT varCA_CClts IMMOB Lag_ROA, re
xttest0 Breusch and Pagan Lagrangian multiplier test for random effects ACCTT[i,t] = Xb + u[i] + e[i,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- ACCTT | .0108795 .104305 e | .0088742 .0942029 u | .0009049 .0300817 Test: Var(u) = 0 chibar2(01) = 2.35 Prob > chibar2 = 0.0628
hausman fixe ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixe . Difference S.E. -------------+---------------------------------------------------------------- varCA_CClts | -.0782775 -.0894111 .0111337 .0217968 IMMOB | .1373683 -.0653583 .2027266 .0707456 Lag_ROA | .2490675 .1397222 .1093453 .1441856 ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 8.28 Prob>chi2 = 0.0405
xtreg ACCTT varCA_CClts IMMOB Lag_ROA, fe
xttest3 Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (38) = 15736.78 Prob>chi2 = 0.0000
xtserial ACCTT varCA_CClts IMMOB Lag_ROA Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F( 1, 37) = 0.151 Prob > F = 0.6995
xtreg ACCTT varCA_CClts IMMOB Lag_ROA, fe robust
. use "http://www.stata-press.com/data/r15/nlswork.dta" (National Longitudinal Survey. Young Women 14-26 years of age in 1968) . xtreg ln_wage age, fe rob Fixed-effects (within) regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-sq: Obs per group: within = 0.1026 min = 1 between = 0.0877 avg = 6.1 overall = 0.0774 max = 15 F(1,4709) = 884.05 corr(u_i, Xb) = 0.0314 Prob > F = 0.0000 (Std. Err. adjusted for 4,710 clusters in idcode) ------------------------------------------------------------------------------ | Robust ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0181349 .0006099 29.73 0.000 .0169392 .0193306 _cons | 1.148214 .0177153 64.81 0.000 1.113483 1.182944 -------------+---------------------------------------------------------------- sigma_u | .40635023 sigma_e | .30349389 rho | .64192015 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . predict fitted, xb (24 missing values generated) . g sq_fitted=fitted^2 (24 missing values generated) . xtreg ln_wage fitted sq_fitted , fe rob Fixed-effects (within) regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-sq: Obs per group: within = 0.1087 min = 1 between = 0.1006 avg = 6.1 overall = 0.0865 max = 15 F(2,4709) = 507.42 corr(u_i, Xb) = 0.0440 Prob > F = 0.0000 (Std. Err. adjusted for 4,710 clusters in idcode) ------------------------------------------------------------------------------ | Robust ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fitted | 7.143466 .738485 9.67 0.000 5.69569 8.591242 sq_fitted | -1.816243 .2188485 -8.30 0.000 -2.245289 -1.387198 _cons | -5.167788 .6209677 -8.32 0.000 -6.385175 -3.950401 -------------+---------------------------------------------------------------- sigma_u | .4039153 sigma_e | .30245467 rho | .64073314 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . test sq_fitted=0 ( 1) sq_fitted = 0 F( 1, 4709) = 68.87 Prob > F = 0.0000 .
Comment