Hello,
I’m writing with a problem related to Stata’s ivprobit command and post estimation. Specifically, I’m wondering if it’s possible for a variable’s marginal effect on the predicted probability of a positive outcome to be positive, when the original probit coefficient was negative. It doesn’t make sense to me intuitively, but perhaps I am missing something.
Here is the output Stata is producing when I enter the commands (starting with the correlation of the endogenous X1 variable and the exogenous IV). If anyone can help me understand the peculiar results I’ll appreciate it very much.
Thank you!
corr endogenous_X1 IV
(obs=1,720)
| endogenous_X1 IV
-------------+------------------
endogenous_X11 | 1.0000
IV | -0.1427 1.0000
ivprobit Y (endogenous_X1=IV) X2 X3
Probit model with endogenous regressors Number of obs = 1,600
Wald chi2(3) = 246.81
Log likelihood = -1441.9858 Prob > chi2 = 0.0000
-------------------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
endogenous_X1 | -1.366359 .3718464 -3.67 0.000 -2.095165 -.6375535
X2 | .2505178 .125386 2.00 0.046 .0047658 .4962699
X3 | .0004856 .0000747 6.50 0.000 .0003391 .000632
_cons | -.6382642 .335679 -1.90 0.057 -1.296183 .0196546
-----------------------+----------------------------------------------------------------
corr(e.endogenous_X1,e.Y)| .8369293 .0989804 .5103483 .9525369
sd(e.endogenous_X1)| .4395636 .0077705 .4245946 .4550603
-------------------------------------------------------------------------------------------
Instrumented: endogenous_X1
Instruments: X2 X3 IV
-------------------------------------------------------------------------------------------
Wald test of exogeneity (corr = 0): chi2(1) = 13.43 Prob > chi2 = 0.0002
margins, dydx(*) predict(pr)
Average marginal effects Number of obs = 1,600
Model VCE : OIM
Expression : Probability of positive outcome, predict(pr)
dy/dx w.r.t. : endogenous_X1 X2 X3 IV
-------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
--------------+--------------------------------------------------------------
endogenous_X1 | .1654096 .0574563 2.88 0.004 .0527973 .278022
X2 | .0767575 .021691 3.54 0.000 .0342439 .1192711
X3 | .0000598 .0000246 2.43 0.015 .0000116 .000108
IV | .055347 .0151233 3.66 0.000 .0257059 .0849881
-------------------------------------------------------------------------------
I’m writing with a problem related to Stata’s ivprobit command and post estimation. Specifically, I’m wondering if it’s possible for a variable’s marginal effect on the predicted probability of a positive outcome to be positive, when the original probit coefficient was negative. It doesn’t make sense to me intuitively, but perhaps I am missing something.
Here is the output Stata is producing when I enter the commands (starting with the correlation of the endogenous X1 variable and the exogenous IV). If anyone can help me understand the peculiar results I’ll appreciate it very much.
Thank you!
corr endogenous_X1 IV
(obs=1,720)
| endogenous_X1 IV
-------------+------------------
endogenous_X11 | 1.0000
IV | -0.1427 1.0000
ivprobit Y (endogenous_X1=IV) X2 X3
Probit model with endogenous regressors Number of obs = 1,600
Wald chi2(3) = 246.81
Log likelihood = -1441.9858 Prob > chi2 = 0.0000
-------------------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
endogenous_X1 | -1.366359 .3718464 -3.67 0.000 -2.095165 -.6375535
X2 | .2505178 .125386 2.00 0.046 .0047658 .4962699
X3 | .0004856 .0000747 6.50 0.000 .0003391 .000632
_cons | -.6382642 .335679 -1.90 0.057 -1.296183 .0196546
-----------------------+----------------------------------------------------------------
corr(e.endogenous_X1,e.Y)| .8369293 .0989804 .5103483 .9525369
sd(e.endogenous_X1)| .4395636 .0077705 .4245946 .4550603
-------------------------------------------------------------------------------------------
Instrumented: endogenous_X1
Instruments: X2 X3 IV
-------------------------------------------------------------------------------------------
Wald test of exogeneity (corr = 0): chi2(1) = 13.43 Prob > chi2 = 0.0002
margins, dydx(*) predict(pr)
Average marginal effects Number of obs = 1,600
Model VCE : OIM
Expression : Probability of positive outcome, predict(pr)
dy/dx w.r.t. : endogenous_X1 X2 X3 IV
-------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
--------------+--------------------------------------------------------------
endogenous_X1 | .1654096 .0574563 2.88 0.004 .0527973 .278022
X2 | .0767575 .021691 3.54 0.000 .0342439 .1192711
X3 | .0000598 .0000246 2.43 0.015 .0000116 .000108
IV | .055347 .0151233 3.66 0.000 .0257059 .0849881
-------------------------------------------------------------------------------
Comment