Dear Statalisters,
let's say we are interested in the effect of mpg on price for domestic and foreign cars separately. We could split the sample:
Or we could include an interaction:
The coefficients are exactly the same. However, t-values and standard errors are different. Interestingly, for mpg[foreign] the sample split gets smaller standard errors, whereas for mpg[domestic] the model with the interaction term has smaller standard errors. What are the mechanics behind these different standard errors? Results posted below.
let's say we are interested in the effect of mpg on price for domestic and foreign cars separately. We could split the sample:
Code:
sysuse auto, clear reg price mpg if foreign == 0 reg price mpg if foreign == 1
Code:
reg price c.mpg##foreign margins foreign, dydx(mpg)
Code:
. sysuse auto, clear (1978 Automobile Data) . reg price mpg if foreign == 0 Source | SS df MS Number of obs = 52 -------------+---------------------------------- F(1, 50) = 17.05 Model | 124392956 1 124392956 Prob > F = 0.0001 Residual | 364801844 50 7296036.89 R-squared = 0.2543 -------------+---------------------------------- Adj R-squared = 0.2394 Total | 489194801 51 9592054.92 Root MSE = 2701.1 ------------------------------------------------------------------------------ price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- mpg | -329.2551 79.74034 -4.13 0.000 -489.4183 -169.0919 _cons | 12600.54 1624.773 7.76 0.000 9337.085 15863.99 ------------------------------------------------------------------------------ . reg price mpg if foreign == 1 Source | SS df MS Number of obs = 22 -------------+---------------------------------- F(1, 20) = 13.25 Model | 57534941.7 1 57534941.7 Prob > F = 0.0016 Residual | 86828271.1 20 4341413.55 R-squared = 0.3985 -------------+---------------------------------- Adj R-squared = 0.3685 Total | 144363213 21 6874438.7 Root MSE = 2083.6 ------------------------------------------------------------------------------ price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- mpg | -250.3668 68.77435 -3.64 0.002 -393.8276 -106.906 _cons | 12586.95 1760.689 7.15 0.000 8914.217 16259.68 ------------------------------------------------------------------------------
Code:
. reg price c.mpg##i.foreign Source | SS df MS Number of obs = 74 -------------+---------------------------------- F(3, 70) = 9.48 Model | 183435281 3 61145093.6 Prob > F = 0.0000 Residual | 451630115 70 6451858.79 R-squared = 0.2888 -------------+---------------------------------- Adj R-squared = 0.2584 Total | 635065396 73 8699525.97 Root MSE = 2540.1 ------------------------------------------------------------------------------- price | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------+---------------------------------------------------------------- mpg | -329.2551 74.98545 -4.39 0.000 -478.8088 -179.7013 | foreign | Foreign | -13.58741 2634.664 -0.01 0.996 -5268.258 5241.084 | foreign#c.mpg | Foreign | 78.88826 112.4812 0.70 0.485 -145.4485 303.225 | _cons | 12600.54 1527.888 8.25 0.000 9553.261 15647.81 ------------------------------------------------------------------------------- . margins foreign, dydx(mpg) Average marginal effects Number of obs = 74 Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : mpg ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- mpg | foreign | Domestic | -329.2551 74.98545 -4.39 0.000 -478.8088 -179.7013 Foreign | -250.3668 83.8404 -2.99 0.004 -417.5812 -83.1524 ------------------------------------------------------------------------------
Comment