I am performing a Hausman test to decide whether to use fixed effects or random effects model. The results I get are as follows:
How do I go about interpreting the results?
HTML Code:
. *Huasman test . . xtreg lnTotal lnINS lnINFO EX Fopen DCC DDiff lnINF lnliquid lnreserve GDP DC, fe Fixed-effects (within) regression Number of obs = 166 Group variable: Country1 Number of groups = 10 R-sq: Obs per group: within = 0.0961 min = 14 between = 0.0023 avg = 16.6 overall = 0.0000 max = 19 F(11,145) = 1.40 corr(u_i, Xb) = -0.1736 Prob > F = 0.1782 ------------------------------------------------------------------------------ lnTotal | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnINS | -.0185582 .0639773 -0.29 0.772 -.1450068 .1078903 lnINFO | -.0898688 .0363678 -2.47 0.015 -.1617483 -.0179893 EX | .0006407 .0026112 0.25 0.807 -.0045203 .0058016 Fopen | -.0000704 .006281 -0.01 0.991 -.0124846 .0123438 DCC | .0696891 .0565816 1.23 0.220 -.0421421 .1815203 DDiff | -.000171 .0003266 -0.52 0.601 -.0008164 .0004744 lnINF | -.0024146 .0038216 -0.63 0.528 -.0099678 .0051386 lnliquid | .0069447 .0162551 0.43 0.670 -.0251829 .0390722 lnreserve | -.0000648 .0094526 -0.01 0.995 -.0187476 .0186179 GDP | -2.41e-07 8.55e-07 -0.28 0.779 -1.93e-06 1.45e-06 DC | .000066 .0001659 0.40 0.691 -.0002619 .0003938 _cons | 2.41544 .2245863 10.76 0.000 1.971554 2.859326 -------------+---------------------------------------------------------------- sigma_u | .10458566 sigma_e | .03365599 rho | .90616053 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(9, 145) = 39.74 Prob > F = 0.0000 . . . est store fe . . xtreg lnTotal lnINS lnINFO EX Fopen DCC DDiff lnINF lnliquid lnreserve GDP DC, re Random-effects GLS regression Number of obs = 166 Group variable: Country1 Number of groups = 10 R-sq: Obs per group: within = 0.0333 min = 14 between = 0.8975 avg = 16.6 overall = 0.7080 max = 19 Wald chi2(11) = 373.44 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ lnTotal | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnINS | -.2017622 .0624443 -3.23 0.001 -.3241509 -.0793735 lnINFO | -.3138742 .0415717 -7.55 0.000 -.3953532 -.2323952 EX | .0198729 .0019662 10.11 0.000 .0160192 .0237266 Fopen | .0489099 .0037879 12.91 0.000 .0414857 .0563341 DCC | .1402536 .1003481 1.40 0.162 -.056425 .3369322 DDiff | -.0001883 .000587 -0.32 0.748 -.0013388 .0009622 lnINF | -.0174453 .0056082 -3.11 0.002 -.0284372 -.0064533 lnliquid | .1004124 .0197108 5.09 0.000 .06178 .1390448 lnreserve | .0142735 .0091647 1.56 0.119 -.003689 .032236 GDP | 2.92e-06 3.19e-07 9.17 0.000 2.30e-06 3.55e-06 DC | -.0002536 .0002279 -1.11 0.266 -.0007003 .0001932 _cons | 3.094598 .2414919 12.81 0.000 2.621283 3.567914 -------------+---------------------------------------------------------------- sigma_u | 0 sigma_e | .03365599 rho | 0 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . . . est store re . . . hausman fe re,sigmamore Note: the rank of the differenced variance matrix (9) does not equal the number of coefficients being tested (11); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fe re Difference S.E. -------------+---------------------------------------------------------------- lnINS | -.0185582 -.2017622 .183204 .0972626 lnINFO | -.0898688 -.3138742 .2240054 .0508787 EX | .0006407 .0198729 -.0192322 .0042882 Fopen | -.0000704 .0489099 -.0489803 .0106965 DCC | .0696891 .1402536 -.0705645 .0194799 DDiff | -.000171 -.0001883 .0000172 .000059 lnINF | -.0024146 -.0174453 .0150307 .0040267 lnliquid | .0069447 .1004124 -.0934677 .0217691 lnreserve | -.0000648 .0142735 -.0143383 .0144098 GDP | -2.41e-07 2.92e-06 -3.16e-06 1.51e-06 DC | .000066 -.0002536 .0003195 .0001946 ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 109.57 Prob>chi2 = 0.0000 (V_b-V_B is not positive definite) . . *Breusch Pagan LM test for random effects VS OLS . . . quietly xtreg Total INS INFO Fopen Topen Diff INF liquid reserve DC, re . . xttest0 Breusch and Pagan Lagrangian multiplier test for random effects Total[Country1,t] = Xb + u[Country1] + e[Country1,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- Total | .473289 .68796 e | .0465037 .2156472 u | 0 0 Test: Var(u) = 0 chibar2(01) = 0.00 Prob > chibar2 = 1.0000 . . ** Test FE or RE STD** . . xtoverid Error - saved RE estimates are degenerate (sigma_u=0) and equivalent to pooled OLS r(198);
How do I go about interpreting the results?
Comment