Hi
I am trying to estimate a system of equations concerning the effect of FDI on Business cycle synchronisation.
The system is as follows.
(Business Synchronization) i j = (Trade Intensity)i j + (FDI Intensity)i j + (Structural Dissimilarity) + Z1i j + u i j
(FDI Intensity)i j = (Trade Intensity)i j +(Structural Dissimilarity)i j + Z2i j + u i j
(Trade Intensity) i j = (FDI Intensity)i j + (Structural Dissimilarity)i j +Z3 i j +u ij
(Structual Dissimilarity) i j = (FDI Intensity)i j +(Trade Intensity)i j + Z4 I J +u i j
Where i denotes country I . j denotes country j. Z Denotes exogenous determinants of the dependent variable for that equation
When I don't suppress the constant, here is the STATA output using three stage least squares estimator
When I suppress the constant here is the output.
As can be seen, when suppressing the constant for each equation, R squared seems to increase for each equation and a number of variables become more significant. However, the coefficient for trade becomes negative. This however goes against what economic theory predicts. Theory would predict that countries that have high trade intensity would be suspect to business cycle synchronisation.
Should I thus suppress the constant and go with the model with the higher r squared and more significant variables or should I go with what the theory predicts?
Thanks
Mark
I am trying to estimate a system of equations concerning the effect of FDI on Business cycle synchronisation.
The system is as follows.
(Business Synchronization) i j = (Trade Intensity)i j + (FDI Intensity)i j + (Structural Dissimilarity) + Z1i j + u i j
(FDI Intensity)i j = (Trade Intensity)i j +(Structural Dissimilarity)i j + Z2i j + u i j
(Trade Intensity) i j = (FDI Intensity)i j + (Structural Dissimilarity)i j +Z3 i j +u ij
(Structual Dissimilarity) i j = (FDI Intensity)i j +(Trade Intensity)i j + Z4 I J +u i j
Where i denotes country I . j denotes country j. Z Denotes exogenous determinants of the dependent variable for that equation
When I don't suppress the constant, here is the STATA output using three stage least squares estimator
Code:
Three-stage least-squares regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- synch 183 4 .0233448 0.2415 111.42 0.0000 fdi 183 4 .0397629 0.2064 158.99 0.0000 trade 183 4 .024307 0.4589 446.22 0.0000 dissim 183 4 .1277664 0.4433 276.77 0.0000 ---------------------------------------------------------------------- ---------------------------------------------------------------------------------- | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- synch | trade | .3203797 .1389368 2.31 0.021 .0480685 .5926909 fdi | .1204827 .0971815 1.24 0.215 -.0699895 .3109549 dissim | .0359573 .0156557 2.30 0.022 .0052726 .066642 euro | .0305018 .0059332 5.14 0.000 .018873 .0421306 _cons | -.0918088 .0071617 -12.82 0.000 -.1058456 -.0777721 -----------------+---------------------------------------------------------------- fdi | trade | 1.519969 .1435987 10.58 0.000 1.238521 1.801417 dissim | .0828209 .0245547 3.37 0.001 .0346944 .1309473 border | -.0434 .0120242 -3.61 0.000 -.0669669 -.019833 euro | -.0008237 .0042045 -0.20 0.845 -.0090643 .007417 _cons | -.0327858 .0113729 -2.88 0.004 -.0550763 -.0104953 -----------------+---------------------------------------------------------------- trade | fdi | .5812198 .0360878 16.11 0.000 .5104889 .6519506 dissim | -.0639277 .0115948 -5.51 0.000 -.0866531 -.0412024 border | .025972 .0053825 4.83 0.000 .0154225 .0365215 logdistance | -.0068376 .0013158 -5.20 0.000 -.0094165 -.0042587 _cons | .0509309 .0066589 7.65 0.000 .0378797 .063982 -----------------+---------------------------------------------------------------- dissim | trade | 1.568267 .9418691 1.67 0.096 -.2777621 3.414297 fdi | -2.857465 .9470738 -3.02 0.003 -4.713695 -1.001234 gdpgap | .2480874 .0182323 13.61 0.000 .2123528 .283822 loggdpcapitaprod | .4634245 .0879656 5.27 0.000 .291015 .635834 _cons | -4.171305 .8046478 -5.18 0.000 -5.748385 -2.594224 ---------------------------------------------------------------------------------- Endogenous variables: synch trade fdi dissim Exogenous variables: logdistance loggdpcapitaprod gdpgap loggdpprod euro lang landlocked border logfreedom ------------------------------------------------------------------------------
When I suppress the constant here is the output.
Code:
---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- synch 183 4 .0475851 0.5097 552.74 0.0000 fdi 183 4 .0377404 0.5349 400.96 0.0000 trade 183 4 .0285063 0.5361 578.89 0.0000 dissim 183 4 .167015 0.8399 1957.54 0.0000 ---------------------------------------------------------------------- ---------------------------------------------------------------------------------- | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- synch | trade | -1.290544 .1589516 -8.12 0.000 -1.602084 -.979005 fdi | .9583024 .1368436 7.00 0.000 .6900939 1.226511 dissim | -.1607618 .0085147 -18.88 0.000 -.1774502 -.1440734 euro | .0361279 .0072658 4.97 0.000 .0218871 .0503687 -----------------+---------------------------------------------------------------- fdi | trade | 1.202404 .0902235 13.33 0.000 1.025569 1.379239 dissim | .0144295 .0075185 1.92 0.055 -.0003066 .0291656 border | -.0109175 .0093866 -1.16 0.245 -.029315 .0074799 euro | .006046 .0043691 1.38 0.166 -.0025172 .0146093 -----------------+---------------------------------------------------------------- trade | fdi | .7297148 .0377461 19.33 0.000 .6557339 .8036958 dissim | -.0347674 .0072208 -4.81 0.000 -.0489199 -.0206149 border | .0131548 .0052226 2.52 0.012 .0029188 .0233909 logdistance | .0036213 .0006443 5.62 0.000 .0023585 .0048842 -----------------+---------------------------------------------------------------- dissim | trade | -5.162866 .5351785 -9.65 0.000 -6.211796 -4.113935 fdi | 3.246299 .435652 7.45 0.000 2.392437 4.100161 gdpgap | .1619648 .0152134 10.65 0.000 .1321472 .1917824 loggdpcapitaprod | .0181678 .0029277 6.21 0.000 .0124296 .023906 ---------------------------------------------------------------------------------- Endogenous variables: synch trade fdi dissim Exogenous variables: logdistance loggdpcapitaprod gdpgap loggdpprod euro lang landlocked border logfreedom ------------------------------------------------------------------------------
As can be seen, when suppressing the constant for each equation, R squared seems to increase for each equation and a number of variables become more significant. However, the coefficient for trade becomes negative. This however goes against what economic theory predicts. Theory would predict that countries that have high trade intensity would be suspect to business cycle synchronisation.
Should I thus suppress the constant and go with the model with the higher r squared and more significant variables or should I go with what the theory predicts?
Thanks
Mark