Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Confirmation Factor analysis with panel data

    Dear Statalist,

    I am a newbie and I were stuck for some days.

    I need to run CFA for a panel data which has 63 provinces from 2007 to 2015. I want to make a measurement model for the absorptive capacity of a province which constructed by six components.

    I know that sem (y->x1 x2) works only for one year. And I do not know how to do with panel data.

    Is it possible to use gsem (y M1[year]-> x1 x2)?

    Or should I reshape the data into the wide form and run sem for each year like sem(y1->x11 x12) (y2->x21 x22)....

    And is it possible if I treat the panel data as an extended cross-sectional data and use sem for it?

    I really need your wisdom in this case. Please enlighten me

    Thank you.

  • #2
    I guess that this thread is the breakout from this one. It seems as if you have a single multivariate observation per province per year.

    Have you had a look at what others have done? It seems popular to handle it wide, analogous to a latent growth model.

    Perhaps you can account for the random effect of province by imposing an equicorrelated covariance structure on the annual latent factors, something like the first option below.

    As an alternative, which would be after the user's manual example that I referred to in the previous thread, perhaps you can explicitly add the random effect for province to each equation (each year's CFA) and correspondingly constrain the latent factor covariances to zero, something like the second option below. (Convergence is much slower than the first.)

    For brevity and simplicity, I've limited things to three measurements and three years in the illustration below of the two possibilities to consider. If you're comfortable with its psychometric properties—stability and invariance etc.—then your model might benefit from constraints to aid convergence, and perhaps a mean structure to aid interpretation. Others on the list might have additional (or contrary) advice.

    .ÿ
    .ÿversionÿ15.1

    .ÿ
    .ÿclearÿ*

    .ÿ
    .ÿsetÿseedÿ`=strreverse("1494328")'

    .ÿ
    .ÿ//ÿProvinces
    .ÿquietlyÿsetÿobsÿ65

    .ÿgenerateÿbyteÿprovinceÿ=ÿ_n

    .ÿgenerateÿdoubleÿprovince_uÿ=ÿrnormal(0,ÿsqrt(2))

    .ÿ
    .ÿ//ÿYears
    .ÿquietlyÿexpandÿ3

    .ÿquietlyÿbysortÿprovince:ÿgenerateÿbyteÿyearÿ=ÿ_n

    .ÿ
    .ÿ//ÿMeasurementsÿwithÿerror
    .ÿtempnameÿCorr

    .ÿmatrixÿdefineÿ`Corr'ÿ=ÿJ(3,ÿ3,ÿ0.75)ÿ+ÿI(3)ÿ*ÿ0.25

    .ÿforvaluesÿitemÿ=ÿ1/3ÿ{
    ÿÿ2.ÿÿÿÿÿÿÿÿÿlocalÿvarlistÿ`varlist'ÿitem`item'
    ÿÿ3.ÿ}

    .ÿdrawnormÿ`varlist',ÿdoubleÿcorr(`Corr')

    .ÿforeachÿvarÿofÿvarlistÿ`varlist'ÿ{
    ÿÿ2.ÿÿÿÿÿÿÿÿÿquietlyÿreplaceÿ`var'ÿ=ÿprovince_uÿ+ÿ`var'
    ÿÿ3.ÿ}

    .ÿ
    .ÿ*
    .ÿ*ÿBeginÿhere
    .ÿ*
    .ÿquietlyÿreshapeÿwideÿitem?,ÿi(province)ÿj(year)

    .ÿ
    .ÿ//ÿFirstÿapproach
    .ÿforvaluesÿyearÿ=ÿ1/3ÿ{
    ÿÿ2.ÿÿÿÿÿÿÿÿÿlocalÿmodelÿ`model'ÿ(item?`year'ÿ<-ÿAC`year')
    ÿÿ3.ÿ}

    .ÿ
    .ÿforvaluesÿyearÿ=ÿ1/2ÿ{
    ÿÿ2.ÿÿÿÿÿÿÿÿÿforvaluesÿnext_yearÿ=ÿ`=`year'ÿ+ÿ1'/3ÿ{
    ÿÿ3.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlocalÿcovarianceÿ`covariance'ÿAC`year'*AC`next_year'@c1
    ÿÿ4.ÿÿÿÿÿÿÿÿÿ}
    ÿÿ5.ÿ}

    .ÿ
    .ÿsemÿ`model',ÿcovariance(`covariance')ÿnocnsreportÿnodescribeÿnofootnoteÿÿnolog

    StructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿÿ65
    Estimationÿmethodÿÿ=ÿml
    Logÿlikelihoodÿÿÿÿÿ=ÿ-705.54588

    ------------------------------------------------------------------------------
    ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOIM
    ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
    -------------+----------------------------------------------------------------
    Measurementÿÿ|
    ÿÿitem11ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC1ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.5274207ÿÿÿÿ.201514ÿÿÿÿ-2.62ÿÿÿ0.009ÿÿÿÿ-.9223809ÿÿÿ-.1324605
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem21ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC1ÿ|ÿÿÿ.9831336ÿÿÿÿ.061192ÿÿÿÿ16.07ÿÿÿ0.000ÿÿÿÿÿ.8631995ÿÿÿÿ1.103068
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.4436036ÿÿÿ.1938397ÿÿÿÿ-2.29ÿÿÿ0.022ÿÿÿÿ-.8235224ÿÿÿ-.0636849
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem31ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC1ÿ|ÿÿÿ.9752267ÿÿÿ.0591238ÿÿÿÿ16.49ÿÿÿ0.000ÿÿÿÿÿ.8593462ÿÿÿÿ1.091107
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.6352514ÿÿÿ.1914424ÿÿÿÿ-3.32ÿÿÿ0.001ÿÿÿÿ-1.010471ÿÿÿ-.2600312
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem12ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC2ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.7064861ÿÿÿ.2066509ÿÿÿÿ-3.42ÿÿÿ0.001ÿÿÿÿ-1.111514ÿÿÿ-.3014577
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem22ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC2ÿ|ÿÿÿ.9843264ÿÿÿ.0541768ÿÿÿÿ18.17ÿÿÿ0.000ÿÿÿÿÿ.8781417ÿÿÿÿ1.090511
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.5480426ÿÿÿ.2019035ÿÿÿÿ-2.71ÿÿÿ0.007ÿÿÿÿ-.9437662ÿÿÿ-.1523191
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem32ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC2ÿ|ÿÿÿ.9672261ÿÿÿ.0549762ÿÿÿÿ17.59ÿÿÿ0.000ÿÿÿÿÿ.8594748ÿÿÿÿ1.074977
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.6303917ÿÿÿ.1999448ÿÿÿÿ-3.15ÿÿÿ0.002ÿÿÿÿ-1.022276ÿÿÿ-.2385071
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem13ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC3ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.1810775ÿÿÿ.2084531ÿÿÿÿ-0.87ÿÿÿ0.385ÿÿÿÿ-.5896381ÿÿÿÿÿ.227483
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem23ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC3ÿ|ÿÿÿ.9239949ÿÿÿ.0534575ÿÿÿÿ17.28ÿÿÿ0.000ÿÿÿÿÿ.8192202ÿÿÿÿÿ1.02877
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.3242394ÿÿÿÿ.195048ÿÿÿÿ-1.66ÿÿÿ0.096ÿÿÿÿ-.7065264ÿÿÿÿ.0580476
    ÿÿ-----------+----------------------------------------------------------------
    ÿÿitem33ÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿAC3ÿ|ÿÿÿ.9187966ÿÿÿÿ.054129ÿÿÿÿ16.97ÿÿÿ0.000ÿÿÿÿÿ.8127058ÿÿÿÿ1.024887
    ÿÿÿÿÿÿÿ_consÿ|ÿÿ-.4154144ÿÿÿ.1946614ÿÿÿÿ-2.13ÿÿÿ0.033ÿÿÿÿ-.7969437ÿÿÿ-.0338852
    -------------+----------------------------------------------------------------
    var(e.item11)|ÿÿÿ.3393043ÿÿÿ.0783851ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2157482ÿÿÿÿ.5336193
    var(e.item21)|ÿÿÿ.2190279ÿÿÿ.0628846ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1247708ÿÿÿÿ.3844909
    var(e.item31)|ÿÿÿ.1946086ÿÿÿ.0589427ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.107486ÿÿÿÿ.3523485
    var(e.item12)|ÿÿÿ.2634809ÿÿÿ.0696836ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1569024ÿÿÿÿ.4424548
    var(e.item22)|ÿÿÿ.2155448ÿÿÿ.0623448ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1222738ÿÿÿÿ.3799633
    var(e.item32)|ÿÿÿ.2482253ÿÿÿ.0643393ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1493541ÿÿÿÿ.4125484
    var(e.item13)|ÿÿÿ.2279364ÿÿÿÿ.068704ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1262545ÿÿÿÿ.4115101
    var(e.item23)|ÿÿÿ.2560458ÿÿÿÿ.066518ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1538808ÿÿÿÿ.4260404
    var(e.item33)|ÿÿÿ.2711254ÿÿÿ.0681879ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1656126ÿÿÿÿ.4438609
    ÿÿÿÿÿvar(AC1)|ÿÿÿ2.300209ÿÿÿ.4183781ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ1.610441ÿÿÿÿ3.285411
    ÿÿÿÿÿvar(AC2)|ÿÿÿ2.512319ÿÿÿ.4162342ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ1.815725ÿÿÿÿ3.476158
    ÿÿÿÿÿvar(AC3)|ÿÿÿ2.596489ÿÿÿ.4296265ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ1.87734ÿÿÿÿ3.591121
    -------------+----------------------------------------------------------------
    ÿcov(AC1,AC2)|ÿÿÿ1.710901ÿÿÿÿ.358309ÿÿÿÿÿ4.77ÿÿÿ0.000ÿÿÿÿÿ1.008629ÿÿÿÿ2.413174
    ÿcov(AC1,AC3)|ÿÿÿ1.710901ÿÿÿÿ.358309ÿÿÿÿÿ4.77ÿÿÿ0.000ÿÿÿÿÿ1.008629ÿÿÿÿ2.413174
    ÿcov(AC2,AC3)|ÿÿÿ1.710901ÿÿÿÿ.358309ÿÿÿÿÿ4.77ÿÿÿ0.000ÿÿÿÿÿ1.008629ÿÿÿÿ2.413174
    ------------------------------------------------------------------------------

    .ÿ
    .ÿ//ÿSecondÿapproach
    .ÿmacroÿdropÿ_all

    .ÿforvaluesÿyearÿ=ÿ1/3ÿ{
    ÿÿ2.ÿÿÿÿÿÿÿÿÿlocalÿmodelÿ`model'ÿ(item?`year'ÿ<-ÿAC`year'ÿM[province])
    ÿÿ3.ÿ}

    .ÿ
    .ÿforvaluesÿyearÿ=ÿ1/2ÿ{
    ÿÿ2.ÿÿÿÿÿÿÿÿÿforvaluesÿnext_yearÿ=ÿ`=`year'ÿ+ÿ1'/3ÿ{
    ÿÿ3.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlocalÿcovarianceÿ`covariance'ÿAC`year'*AC`next_year'@0
    ÿÿ4.ÿÿÿÿÿÿÿÿÿ}
    ÿÿ5.ÿ}

    .ÿ
    .ÿgsemÿ`model',ÿcovariance(`covariance')ÿintmethod(laplace)ÿdifficultÿnocnsreportÿnodvheaderÿnolog

    GeneralizedÿstructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿÿ65
    Logÿlikelihoodÿ=ÿ-704.37277

    ----------------------------------------------------------------------------------
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
    -----------------+----------------------------------------------------------------
    item11ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC1ÿ|ÿÿÿ1.114752ÿÿÿ.1807058ÿÿÿÿÿ6.17ÿÿÿ0.000ÿÿÿÿÿ.7605748ÿÿÿÿ1.468929
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.5274207ÿÿÿ.1969235ÿÿÿÿ-2.68ÿÿÿ0.007ÿÿÿÿ-.9133838ÿÿÿ-.1414576
    -----------------+----------------------------------------------------------------
    item21ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.029823ÿÿÿ.0878315ÿÿÿÿ11.72ÿÿÿ0.000ÿÿÿÿÿ.8576768ÿÿÿÿÿ1.20197
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC1ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.4436036ÿÿÿ.1909239ÿÿÿÿ-2.32ÿÿÿ0.020ÿÿÿÿ-.8178077ÿÿÿ-.0693996
    -----------------+----------------------------------------------------------------
    item31ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ.9954368ÿÿÿ.0830593ÿÿÿÿ11.98ÿÿÿ0.000ÿÿÿÿÿ.8326436ÿÿÿÿÿ1.15823
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC1ÿ|ÿÿÿ1.076055ÿÿÿ.1624367ÿÿÿÿÿ6.62ÿÿÿ0.000ÿÿÿÿÿÿ.757685ÿÿÿÿ1.394425
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.6352514ÿÿÿ.1885372ÿÿÿÿ-3.37ÿÿÿ0.001ÿÿÿÿ-1.004777ÿÿÿ-.2657253
    -----------------+----------------------------------------------------------------
    item12ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.139621ÿÿÿ.1910121ÿÿÿÿÿ5.97ÿÿÿ0.000ÿÿÿÿÿ.7652443ÿÿÿÿ1.513998
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC2ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.7064861ÿÿÿ.2120341ÿÿÿÿ-3.33ÿÿÿ0.001ÿÿÿÿ-1.122065ÿÿÿ-.2909069
    -----------------+----------------------------------------------------------------
    item22ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.114758ÿÿÿ.1875219ÿÿÿÿÿ5.94ÿÿÿ0.000ÿÿÿÿÿÿ.747222ÿÿÿÿ1.482294
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC2ÿ|ÿÿÿ.9747296ÿÿÿ.1375899ÿÿÿÿÿ7.08ÿÿÿ0.000ÿÿÿÿÿ.7050584ÿÿÿÿ1.244401
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.5480426ÿÿÿ.2059332ÿÿÿÿ-2.66ÿÿÿ0.008ÿÿÿÿ-.9516642ÿÿÿ-.1444211
    -----------------+----------------------------------------------------------------
    item32ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.060217ÿÿÿ.1819919ÿÿÿÿÿ5.83ÿÿÿ0.000ÿÿÿÿÿ.7035196ÿÿÿÿ1.416915
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC2ÿ|ÿÿÿ1.050839ÿÿÿÿ.153482ÿÿÿÿÿ6.85ÿÿÿ0.000ÿÿÿÿÿ.7500202ÿÿÿÿ1.351659
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.6303917ÿÿÿ.2038744ÿÿÿÿ-3.09ÿÿÿ0.002ÿÿÿÿ-1.029978ÿÿÿ-.2308053
    -----------------+----------------------------------------------------------------
    item13ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.056274ÿÿÿ.1816768ÿÿÿÿÿ5.81ÿÿÿ0.000ÿÿÿÿÿ.7001945ÿÿÿÿ1.412354
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC3ÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.1810775ÿÿÿ.2080606ÿÿÿÿ-0.87ÿÿÿ0.384ÿÿÿÿ-.5888688ÿÿÿÿ.2267137
    -----------------+----------------------------------------------------------------
    item23ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.008584ÿÿÿ.1685453ÿÿÿÿÿ5.98ÿÿÿ0.000ÿÿÿÿÿ.6782414ÿÿÿÿ1.338927
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC3ÿ|ÿÿÿ.8497558ÿÿÿ.1161281ÿÿÿÿÿ7.32ÿÿÿ0.000ÿÿÿÿÿ.6221489ÿÿÿÿ1.077363
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.3242394ÿÿÿ.1947632ÿÿÿÿ-1.66ÿÿÿ0.096ÿÿÿÿ-.7059682ÿÿÿÿ.0574894
    -----------------+----------------------------------------------------------------
    item33ÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿM[province]ÿ|ÿÿÿ1.007719ÿÿÿ.1704205ÿÿÿÿÿ5.91ÿÿÿ0.000ÿÿÿÿÿ.6737012ÿÿÿÿ1.341737
    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
    ÿÿÿÿÿÿÿÿÿÿÿÿÿAC3ÿ|ÿÿÿ.8365211ÿÿÿÿ.116352ÿÿÿÿÿ7.19ÿÿÿ0.000ÿÿÿÿÿ.6084754ÿÿÿÿ1.064567
    ÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿ-.4154144ÿÿÿ.1943792ÿÿÿÿ-2.14ÿÿÿ0.033ÿÿÿÿ-.7963907ÿÿÿ-.0344382
    -----------------+----------------------------------------------------------------
    ÿvar(M[province])|ÿÿÿ1.489091ÿÿÿ.4420499ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.832213ÿÿÿÿ2.664452
    ÿÿÿÿÿÿÿÿÿvar(AC1)|ÿÿÿ.5620171ÿÿÿ.2204227ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2605607ÿÿÿÿ1.212244
    ÿÿÿÿÿÿÿÿÿvar(AC2)|ÿÿÿ.7212933ÿÿÿÿ.279169ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.3378028ÿÿÿÿ1.540141
    ÿÿÿÿÿÿÿÿÿvar(AC3)|ÿÿÿ.9502176ÿÿÿ.2890026ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.5235228ÿÿÿÿ1.724688
    -----------------+----------------------------------------------------------------
    ÿÿÿÿvar(e.item11)|ÿÿÿÿ.333134ÿÿÿ.0827353ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.2047478ÿÿÿÿ.5420241
    ÿÿÿÿvar(e.item21)|ÿÿÿ.2281243ÿÿÿ.0622322ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1336486ÿÿÿÿ.3893847
    ÿÿÿÿvar(e.item31)|ÿÿÿ.1842193ÿÿÿ.0630057ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.0942349ÿÿÿÿ.3601293
    ÿÿÿÿvar(e.item12)|ÿÿÿ.2670703ÿÿÿÿ.069367ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1605241ÿÿÿÿ.4443354
    ÿÿÿÿvar(e.item22)|ÿÿÿ.2207789ÿÿÿÿ.062196ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1271055ÿÿÿÿ.3834874
    ÿÿÿÿvar(e.item32)|ÿÿÿ.2313833ÿÿÿ.0704065ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1274453ÿÿÿÿ.4200878
    ÿÿÿÿvar(e.item13)|ÿÿÿ.2021788ÿÿÿ.0777882ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.0951121ÿÿÿÿ.4297691
    ÿÿÿÿvar(e.item23)|ÿÿÿ.2647222ÿÿÿ.0678969ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1601294ÿÿÿÿ.4376325
    ÿÿÿÿvar(e.item33)|ÿÿÿÿ.278813ÿÿÿ.0687162ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1719991ÿÿÿÿ.4519599
    ----------------------------------------------------------------------------------

    .ÿ
    .ÿexit

    endÿofÿdo-file


    .

    Comment


    • #3
      Hi, Joseph Coveney,

      Thank you very much for your guidance. I will try to play around with this

      Comment


      • #4
        Originally posted by Duong Vu View Post
        Thank you very much for your guidance. I will try to play around with this
        You can see that the two models are just different parameterizations of the same structural equation model (they have the same log likelihood, same factor loadings, same intercepts etc.) The two parameterizations of the SEM are directly analogous to expressing a variance component model either as a repeated measures model with compound symmetric covariance structure on the residuals or as a random effects model.

        .ÿ
        .ÿversionÿ15.1

        .ÿ
        .ÿclearÿ*

        .ÿ
        .ÿwebuseÿpig
        (Longitudinalÿanalysisÿofÿpigÿweights)

        .ÿ
        .ÿ//ÿAnalogueÿofÿfirstÿoption
        .ÿmixedÿweightÿi.weekÿ||ÿid:ÿ,ÿnoconstantÿresiduals(exchangeable)ÿ///
        >ÿÿÿÿÿÿÿÿÿremlÿdfmethod(satterthwaite)ÿnolrtestÿnolog

        Mixed-effectsÿREMLÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿ432
        Groupÿvariable:ÿidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿÿ48

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿÿ9
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿÿ9.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿÿ9
        DFÿmethod:ÿSatterthwaiteÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDF:ÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿ72.24
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿ342.25
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿ376.00

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿF(8,ÿÿÿ376.00)ÿÿÿÿ=ÿÿÿÿ3232.75
        Logÿrestricted-likelihoodÿ=ÿ-1007.9601ÿÿÿÿÿÿÿÿÿÿProbÿ>ÿFÿÿÿÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿweightÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿtÿÿÿÿP>|t|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿweekÿ|
        ÿÿÿÿÿÿÿÿÿÿ2ÿÿ|ÿÿÿ6.760417ÿÿÿ.4231323ÿÿÿÿ15.98ÿÿÿ0.000ÿÿÿÿÿ5.928415ÿÿÿÿ7.592419
        ÿÿÿÿÿÿÿÿÿÿ3ÿÿ|ÿÿÿ13.84375ÿÿÿ.4231323ÿÿÿÿ32.72ÿÿÿ0.000ÿÿÿÿÿ13.01175ÿÿÿÿ14.67575
        ÿÿÿÿÿÿÿÿÿÿ4ÿÿ|ÿÿÿÿÿ19.375ÿÿÿ.4231323ÿÿÿÿ45.79ÿÿÿ0.000ÿÿÿÿÿÿÿ18.543ÿÿÿÿÿÿ20.207
        ÿÿÿÿÿÿÿÿÿÿ5ÿÿ|ÿÿÿ25.13542ÿÿÿ.4231323ÿÿÿÿ59.40ÿÿÿ0.000ÿÿÿÿÿ24.30341ÿÿÿÿ25.96742
        ÿÿÿÿÿÿÿÿÿÿ6ÿÿ|ÿÿÿ31.42708ÿÿÿ.4231323ÿÿÿÿ74.27ÿÿÿ0.000ÿÿÿÿÿ30.59508ÿÿÿÿ32.25909
        ÿÿÿÿÿÿÿÿÿÿ7ÿÿ|ÿÿÿÿ37.4375ÿÿÿ.4231323ÿÿÿÿ88.48ÿÿÿ0.000ÿÿÿÿÿÿ36.6055ÿÿÿÿÿ38.2695
        ÿÿÿÿÿÿÿÿÿÿ8ÿÿ|ÿÿÿ44.28125ÿÿÿ.4231323ÿÿÿ104.65ÿÿÿ0.000ÿÿÿÿÿ43.44925ÿÿÿÿ45.11325
        ÿÿÿÿÿÿÿÿÿÿ9ÿÿ|ÿÿÿ50.19792ÿÿÿ.4231323ÿÿÿ118.63ÿÿÿ0.000ÿÿÿÿÿ49.36591ÿÿÿÿ51.02992
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ25.02083ÿÿÿ.6365548ÿÿÿÿ39.31ÿÿÿ0.000ÿÿÿÿÿ23.75196ÿÿÿÿ26.28971
        ------------------------------------------------------------------------------

        ------------------------------------------------------------------------------
        ÿÿRandom-effectsÿParametersÿÿ|ÿÿÿEstimateÿÿÿStd.ÿErr.ÿÿÿÿÿ[95%ÿConf.ÿInterval]
        -----------------------------+------------------------------------------------
        id:ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(empty)ÿ|
        -----------------------------+------------------------------------------------
        Residual:ÿExchangeableÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(e)ÿ|ÿÿÿÿ19.4497ÿÿÿ3.236267ÿÿÿÿÿÿ14.03718ÿÿÿÿ26.94919
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿcov(e)ÿ|ÿÿÿ15.15271ÿÿÿ3.224444ÿÿÿÿÿÿÿ8.83292ÿÿÿÿ21.47251
        ------------------------------------------------------------------------------

        .ÿ
        .ÿ//ÿAnalogueÿofÿsecondÿoption
        .ÿmixedÿweightÿi.weekÿ||ÿid:ÿ,ÿremlÿdfmethod(satterthwaite)ÿnolrtestÿnolog

        Mixed-effectsÿREMLÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿ432
        Groupÿvariable:ÿidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿÿ48

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿÿ9
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿÿ9.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿÿ9
        DFÿmethod:ÿSatterthwaiteÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDF:ÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿ72.24
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿ342.25
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿ376.00

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿF(8,ÿÿÿ376.00)ÿÿÿÿ=ÿÿÿÿ3232.74
        Logÿrestricted-likelihoodÿ=ÿ-1007.9601ÿÿÿÿÿÿÿÿÿÿProbÿ>ÿFÿÿÿÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿweightÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿtÿÿÿÿP>|t|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿweekÿ|
        ÿÿÿÿÿÿÿÿÿÿ2ÿÿ|ÿÿÿ6.760417ÿÿÿ.4231323ÿÿÿÿ15.98ÿÿÿ0.000ÿÿÿÿÿ5.928414ÿÿÿÿ7.592419
        ÿÿÿÿÿÿÿÿÿÿ3ÿÿ|ÿÿÿ13.84375ÿÿÿ.4231323ÿÿÿÿ32.72ÿÿÿ0.000ÿÿÿÿÿ13.01175ÿÿÿÿ14.67575
        ÿÿÿÿÿÿÿÿÿÿ4ÿÿ|ÿÿÿÿÿ19.375ÿÿÿ.4231323ÿÿÿÿ45.79ÿÿÿ0.000ÿÿÿÿÿÿÿ18.543ÿÿÿÿÿÿ20.207
        ÿÿÿÿÿÿÿÿÿÿ5ÿÿ|ÿÿÿ25.13542ÿÿÿ.4231323ÿÿÿÿ59.40ÿÿÿ0.000ÿÿÿÿÿ24.30341ÿÿÿÿ25.96742
        ÿÿÿÿÿÿÿÿÿÿ6ÿÿ|ÿÿÿ31.42708ÿÿÿ.4231323ÿÿÿÿ74.27ÿÿÿ0.000ÿÿÿÿÿ30.59508ÿÿÿÿ32.25909
        ÿÿÿÿÿÿÿÿÿÿ7ÿÿ|ÿÿÿÿ37.4375ÿÿÿ.4231323ÿÿÿÿ88.48ÿÿÿ0.000ÿÿÿÿÿÿ36.6055ÿÿÿÿÿ38.2695
        ÿÿÿÿÿÿÿÿÿÿ8ÿÿ|ÿÿÿ44.28125ÿÿÿ.4231323ÿÿÿ104.65ÿÿÿ0.000ÿÿÿÿÿ43.44925ÿÿÿÿ45.11325
        ÿÿÿÿÿÿÿÿÿÿ9ÿÿ|ÿÿÿ50.19792ÿÿÿ.4231323ÿÿÿ118.63ÿÿÿ0.000ÿÿÿÿÿ49.36591ÿÿÿÿ51.02992
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ25.02083ÿÿÿ.6365548ÿÿÿÿ39.31ÿÿÿ0.000ÿÿÿÿÿ23.75196ÿÿÿÿ26.28971
        ------------------------------------------------------------------------------

        ------------------------------------------------------------------------------
        ÿÿRandom-effectsÿParametersÿÿ|ÿÿÿEstimateÿÿÿStd.ÿErr.ÿÿÿÿÿ[95%ÿConf.ÿInterval]
        -----------------------------+------------------------------------------------
        id:ÿIdentityÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(_cons)ÿ|ÿÿÿ15.15271ÿÿÿ3.224443ÿÿÿÿÿÿ9.985222ÿÿÿÿ22.99445
        -----------------------------+------------------------------------------------
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(Residual)ÿ|ÿÿÿ4.296983ÿÿÿ.3133897ÿÿÿÿÿÿ3.724632ÿÿÿÿ4.957285
        ------------------------------------------------------------------------------

        .ÿ
        .ÿexit

        endÿofÿdo-file


        .

        Comment


        • #5
          Hi Joseph Coveney,

          I used the first method which is kind of repeat the measurement in 2007, 2011 and 2015.
          However, I have one problem which when I standardized the coefficients, the correlation between AC2011 and AC2015 is more than 1. I think it should not be that way but I could not find a reason. Additionally, my SRMR is 0.114 which is more than 0.08

          Would you mind giving me some advice?

          Thank you
          Attached Files
          Last edited by Duong Vu; 26 Apr 2019, 10:37.

          Comment


          • #6
            I never standardize coefficients and I don't do fit statistics, so I'm afraid that I don't have any advice for you, sorry.

            Comment

            Working...
            X