Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How to interpret variance on different levels in melogit

    Dear all,
    I am analysing what are the determinants for the adoption of bonus compensation for a firm (i) headquartered in a country (j). I have more than 700 firms headquartered in 16 countries; my dependent variables is a dichotomous indicating whether bonus compensation is adopted (1) or not (0), and my key independent variables are the first two in the output of the model displayed below.

    The first one indicates whether the country in which the firm is headquartered discourage (-1), encourage (1) or does not have a clear position on bonus compensation (0). The second one indicates whether the firm is listed in US.

    As you can see, these two variables are measured on two different levels. Therefore, similarly to what happens with continuous dependent variable with mixed command, I'd want to understand how much of my variance is explained by firm- and country-level variables.


    Code:
    melogit  FIRM_INCENTIVE_POLICY CodesIncentivesRECOMM2 USListing  *** all remaining indep vars *** || CountryC:, or
    
    Fitting fixed-effects model:
    
    Iteration 0:   log likelihood = -163.67629  
    Iteration 1:   log likelihood = -136.00745  
    Iteration 2:   log likelihood = -135.00212  
    Iteration 3:   log likelihood = -134.96207  
    Iteration 4:   log likelihood =   -134.962  
    Iteration 5:   log likelihood =   -134.962  
    
    Refining starting values:
    
    Grid node 0:   log likelihood = -139.52018
    
    Fitting full model:
    
    Iteration 0:   log likelihood = -139.52018  (not concave)
    ******I omitted all iteration for the sake of brevity******
    Iteration 54:  log likelihood =  -134.9648  
    Iteration 55:  log likelihood = -134.96271  
    Iteration 56:  log likelihood = -134.96218  
    Iteration 57:  log likelihood =   -134.962  
    Iteration 58:  log likelihood =   -134.962  
    
    
    Mixed-effects logistic regression               Number of obs     =        727
    Group variable:    CountryCODED                 Number of groups  =         16
    
                                                    Obs per group:
                                                                  min =          3
                                                                  avg =       45.4
                                                                  max =        365
    
    Integration method: mvaghermite                 Integration pts.  =          7
    
                                                    Wald chi2(23)     =     200.88
    Log likelihood =   -134.962                     Prob > chi2       =     0.0000
    ----------------------------------------------------------------------------------------------
           FIRM_INCENTIVE_POLICY | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
          CodesIncentivesRECOMM2 |   9.843344   3.403505     6.61   0.000     4.998332    19.38475
                       USListing |   10.54212    6.53276     3.80   0.000     3.129346     35.5142
                          FAMILY |   2.478101   1.416788     1.59   0.112     .8081043    7.599248
                    Outsider5_LN |   1.005343   .1950676     0.03   0.978     .6873139     1.47053
                     MEETINGS_LN |   .4335576   .2472911    -1.47   0.143     .1417559    1.326027
                  RepRisk_1Y_AVG |   1.003941   .0181223     0.22   0.827     .9690433    1.040096
                        BETA9802 |   .7564532   .3403387    -0.62   0.535      .313195    1.827045
                    ASSETSUSD_LN |   1.074118    .225251     0.34   0.733     .7121118    1.620151
           TOTALDEBTTOTALASSETS8 |   2.979734   3.803166     0.86   0.392     .2442032     36.3583
                             TSR |   1.001388   .0037582     0.37   0.712      .994049    1.008781
              RETURNONASSETS8326 |   .3602494   1.129024    -0.33   0.745     .0007743    167.5997
                                 |
                   SectorENCODED |
         Consumer Discretionary  |   2.762074   1.600434     1.75   0.080     .8872009    8.599013
               Consumer Staples  |   2.734421   1.905945     1.44   0.149     .6975269    10.71938
                         Energy  |   2.054449   1.460637     1.01   0.311     .5099447    8.276902
                    Health Care  |   1.901764   1.115238     1.10   0.273     .6025489    6.002343
         Information Technology  |   7.974622   5.946515     2.78   0.005      1.84921    34.39014
                      Materials  |   1.237006   .7601254     0.35   0.729     .3709527     4.12501
     Telecommunication Services  |   2.581441   2.960618     0.83   0.408     .2726662    24.43954
                      Utilities  |   1.341628    1.07053     0.37   0.713     .2808211    6.409653
                                 |
    Prot_min_inv_Ext_Dir_Liab_LN |   12.63175   17.98257     1.78   0.075     .7756964    205.7003
                 SayONPaySwitzNB |   .9826529   .9250025    -0.02   0.985     .1552877    6.218179
                       RuleOfLaw |   3.383666   5.149616     0.80   0.423     .1713722    66.80896
               CountryMKTCap2GDP |   1.004822   .0069745     0.69   0.488     .9912444    1.018585
                           _cons |   .0000205   .0001294    -1.71   0.087     8.75e-11     4.81151
    -----------------------------+----------------------------------------------------------------
    CountryCODED                 |
                       var(_cons)|   1.37e-34   5.45e-18                             .           .
    ----------------------------------------------------------------------------------------------
    Note: Estimates are transformed only in the first equation.
    Note: _cons estimates baseline odds (conditional on zero random effects).
    LR test vs. logistic model: chi2(0) = 5.7e-14             Prob > chi2 =      .
    
    Note: LR test is conservative and provided only for reference.

    Thank you for your time,
    Luigi
Working...
X