Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • No F-test value

    Hi,

    can anyone help me on how to deal with the problem of missing F-test value?

    Code:
    Multiple-imputation estimates                   Imputations       =         20
    Tobit regression                                Number of obs     =      1,985
                                                    Average RVI       =     0.0000
                                                    Largest FMI       =     0.0000
                                                    DF:     min       =   7.49e+65
                                                            avg       =   7.49e+65
    DF adjustment:   Large sample                           max       =          .
                                                    F(  17,      .)   =          .
    Within VCE type:       Robust                   Prob > F          =          .
    
                                 (Within VCE adjusted for 183 clusters in Municipality)
    -----------------------------------------------------------------------------------
           lnEffectMW |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
             lnIncome |   .1713888   1.330814     0.13   0.898    -2.436958    2.779736
               lnArea |   -10.9632   18.99225    -0.58   0.564    -48.18732    26.26092
                lnPop |   -11.0056   18.96456    -0.58   0.562    -48.17546    26.16425
            lnAreaPop |   11.16809   18.90128     0.59   0.555    -25.87774    48.21393
           ln_UnempL5 |  -.1357295   .1727421    -0.79   0.432    -.4742978    .2028388
        RedBlockParty |   .0112927   .1538175     0.07   0.941    -.2901841    .3127694
            lnAgeGrp1 |  -1.618337   .7806243    -2.07   0.038    -3.148332   -.0883411
            lnAgeGrp2 |   1.118265   .5289295     2.11   0.034     .0815821    2.154947
            lnAgeGrp3 |   -.306101   .9195161    -0.33   0.739     -2.10832    1.496117
            lnAgeGrp4 |  -.2789467   1.115882    -0.25   0.803    -2.466035    1.908141
            lnAgeGrp5 |   .4830414   .8223909     0.59   0.557    -1.128815    2.094898
            lnAgeGrp6 |  -1.380766   .8250489    -1.67   0.094    -2.997832    .2362999
            lnAgeGrp7 |   .0544808   .8709994     0.06   0.950    -1.652647    1.761608
            lnAgeGrp8 |    1.59106   .5788295     2.75   0.006     .4565748    2.725545
                   MM |  -.2155857   .4176816    -0.52   0.606    -1.034227    .6030553
                   CM |   .4188016   .1845671     2.27   0.023     .0570567    .7805466
                 Year |   .1478967   .0588115     2.51   0.012     .0326283    .2631652
                _cons |  -293.4682   118.6287    -2.47   0.013    -525.9762   -60.96013
    ------------------+----------------------------------------------------------------
     var(e.lnEffectMW)|    1.34662   .0945428                      1.173504    1.545275
    -----------------------------------------------------------------------------------
    Code:
    Refining starting values:
    
    Grid node 0:   log likelihood =  -3110.715
    
    Fitting full model:
    
    Iteration 0:   log pseudolikelihood =  -3110.715  
    Iteration 1:   log pseudolikelihood = -3110.6653  
    Iteration 2:   log pseudolikelihood = -3110.6653  
    
    Tobit regression                                Number of obs     =      1,985
                                                       Uncensored     =      1,978
    Limits: lower = 0                                  Left-censored  =          7
            upper = +inf                               Right-censored =          0
    
                                                    Wald chi2(17)     =     308.92
    Log pseudolikelihood = -3110.6653               Prob > chi2       =     0.0000
                                  (Std. Err. adjusted for 183 clusters in Municipality)
    -----------------------------------------------------------------------------------
                      |               Robust
           lnEffectMW |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
             lnIncome |   .1713888   1.330814     0.13   0.898    -2.436958    2.779736
               lnArea |   -10.9632   18.99225    -0.58   0.564    -48.18732    26.26092
                lnPop |   -11.0056   18.96456    -0.58   0.562    -48.17546    26.16425
            lnAreaPop |   11.16809   18.90128     0.59   0.555    -25.87774    48.21393
           ln_UnempL5 |  -.1357295   .1727421    -0.79   0.432    -.4742978    .2028388
        RedBlockParty |   .0112927   .1538175     0.07   0.941    -.2901841    .3127694
            lnAgeGrp1 |  -1.618337   .7806243    -2.07   0.038    -3.148332   -.0883411
            lnAgeGrp2 |   1.118265   .5289295     2.11   0.034     .0815821    2.154947
            lnAgeGrp3 |   -.306101   .9195161    -0.33   0.739     -2.10832    1.496117
            lnAgeGrp4 |  -.2789467   1.115882    -0.25   0.803    -2.466035    1.908141
            lnAgeGrp5 |   .4830414   .8223909     0.59   0.557    -1.128815    2.094898
            lnAgeGrp6 |  -1.380766   .8250489    -1.67   0.094    -2.997832    .2362999
            lnAgeGrp7 |   .0544808   .8709994     0.06   0.950    -1.652647    1.761608
            lnAgeGrp8 |    1.59106   .5788295     2.75   0.006     .4565748    2.725545
                   MM |  -.2155857   .4176816    -0.52   0.606    -1.034227    .6030552
                   CM |   .4188016   .1845671     2.27   0.023     .0570567    .7805466
                 Year |   .1478967   .0588115     2.51   0.012     .0326283    .2631652
                _cons |  -293.4682   118.6287    -2.47   0.013    -525.9762   -60.96013
    ------------------+----------------------------------------------------------------
     var(e.lnEffectMW)|    1.34662   .0945428                      1.173504    1.545275
    -----------------------------------------------------------------------------------
    Thanks

  • #2
    Annaliza:
    I think the issue is caused by:
    Code:
    Average RVI       =     0.0000
    Largest FMI       =     0.0000
    For more details on F-test calculation in -mi estimate-, see Methods and formulas paragraph, -mi estimate-, Stata .pdf manual.
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment


    • #3
      Thank you Carlo Lazzaro for your response.

      Comment

      Working...
      X