Can you explain more ?
excuse me;
i dont understand what you mean and how should i do that ?
excuse me;
i dont understand what you mean and how should i do that ?
. sysuse auto.dta (1978 Automobile Data) . dataex make price mpg rep78 in 1/5 ----------------------- copy starting from the next line ----------------------- * Example generated by -dataex-. To install: ssc install dataex clear input str18 make int(price mpg rep78) "AMC Concord" 4099 22 3 "AMC Pacer" 4749 17 3 "AMC Spirit" 3799 22 . "Buick Century" 4816 20 3 "Buick Electra" 7827 15 4 end ------------------ copy up to and including the previous line ------------------
. sysuse auto.dta (1978 Automobile Data) . dataex make price mpg rep78 in 1/5 ----------------------- copy starting from the next line ----------------------- * Example generated by -dataex-. To install: ssc install dataex clear input str18 make int(price mpg rep78) "AMC Concord" 4099 22 3 "AMC Pacer" 4749 17 3 "AMC Spirit" 3799 22 . "Buick Century" 4816 20 3 "Buick Electra" 7827 15 4 end ------------------ copy up to and including the previous line ------------------
. gen Lunderline=L.underline (3,968 missing values generated) . end of do-file . do "C:\Users\AM\AppData\Local\Temp\STD04000000.tmp" . gen Lq=L.q (3,968 missing values generated) . end of do-file . dataex underline Lunderline Lq in 1/5 ----------------------- copy starting from the next line ----------------------------------------- copy up to and including the previous line ------------------ Listed 5 out of 11904 observationsCode:* Example generated by -dataex-. To install: ssc install dataex clear input float(underline Lunderline Lq) 0 . . 1 0 0 0 1 0 0 . . 0 0 0 end
use "https://www.stata-press.com/data/r18/nlswork.dta" . xtlogit c_city i.race, fe note: multiple positive outcomes within groups encountered. note: 3,446 groups (18,803 obs) omitted because of all positive or all negative outcomes. note: 2.race omitted because of no within-group variance. note: 3.race omitted because of no within-group variance. Conditional fixed-effects logistic regression Number of obs = 9,723 Group variable: idcode Number of groups = 1,265 Obs per group: min = 2 avg = 7.7 max = 15 LR chi2(0) = -0.00 Log likelihood = -3908.5573 Prob > chi2 = . ------------------------------------------------------------------------------ c_city | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- race | Black | 0 (omitted) Other | 0 (omitted) ------------------------------------------------------------------------------ .
egen yibar = mean(y), by(id) tab yibar if year == 2001
Comment