Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Xtabond2 for system GMM. Please help me for coding

    Dear all,

    I am working with xtabond2 command in Stata to solve the endogenity problem of my estimation. I read the construction of doing xtabond2 from David Roodman. However, I am still confused that my coding is right or wrong. Could you please help?

    Specifically, I want to write a code with xtabond2 command for system GMM as follows:

    " lag2 and lag3 of the levels of firm performance variable, corporate governance variables (female, nonexe, dual, lnsize) and control variables (fsize lev) are employed as GMM-type instrumental variables for the first-differenced equation. Meanwhile, first lagged differences of firm performance, corporate governance, and control variables are used as GMM-type instruments for the levels equation.

    Thank you very ,much in advance.

    Regards,
    Celine

  • #2
    Hi Celine,

    I am no expert in xtabond2 but have used it a couple of times for my regressions but happy to try to help.

    Could you please specify what is the equation that you are estimating (in your questions you only mention the instruments for the first difference and levels equations)? What are the exogenous regressors (if there are any)?

    By the way, the discussion in the following link might be useful for you - although it focuses on the issue of using time dummies in xtabond2:

    https://www.statalist.org/forums/for...m-time-dummies

    Best,
    Roman

    Comment


    • #3
      This may help you start:
      Stata comes with an built-in command called xtabond for dynamic panel data modelling. The command that we shall use has been developed by David Roodman of the Center for Global Development. It is called xtabond2 which can be downloaded from withing Stata with the command ssc install xtabond2.
      1. Before using xtabond2 do not forget to xtset your data:
      xtset panelid timeseriesid
      where panelid is the variable identifying the “individual” and timeseriesid is the variable identifying the date.
      2. xtabond2 first requires the name of the dependent variable followed by the list of explanatory variables. For instance (the data comes from:abdata.dta (-webuse abdata.dta-)
      xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*
      n is the dependent variable (firm’s employment in log)
      the other variables are the explanatory variables (the constant term is assumed)
      L.n is n lagged once; L2.n is n lagged twice; w is firm’s wage level in log; L.w is w lagged once;
      L(0/2) is short for lagged zero times, once and twice; the variables concerned follow in parentheses after a full-stop. Consequently, L(0/2).(k ys) stands for k, L.k, L2.k, y, L.y and L2.y.
      yr* stands for all the variables in the dataset begining with yr.
      After the names of the dependent variable and the explanatory variable follows a comma. After the comma follow the options.
      3. It is almost always useful to put robust and small.
      xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*, robust small
      4. The default is the one-step GMM estimator. If one wants a two-step GMM estimator, add twostep.
      5. The default is the the Blundell-Bond system estimator which adds moment conditions on the levels. If one wants only the difference estimator, add noleveleq.
      6. Now comes the list of instruments, both IV style instruments (the same variable for all the observations) and GMM style instruments (different variables for different observations). Note that there must be at least as many instruments as there are explanatory variables. Exogenous variables are their own instruments and must be listed here, either under ivstyle (strictly exogenous) or under gmmstyle (predetermined or endogenous).
      6a. gmmstyle
      For example, gmmstyle(L.(n w k)) states that all lagged values of L.n, L.w and L.k are to be treated as GMM instruments. To be clear, this means for n that L2.n, L3.n, and so on are the GMM instruments. Similarly, for w and for k.
      For example, gmmstyle(L2.n L.(w k)) states that all lagged values of L2.n, L.w and L.k are to be treated as GMM instruments. Thus, for n, L3.n, L4.n, and so on are the GMM instruments, and for w and k, from the second lag on.
      6b. ivstyle
      For example, ivstyle(L(0/2).ys yr*) states that ys, L.ys, L2.ys and all the yr variables are to be considered as exogenous instruments.

      Putting everything together we get:
      xtabond2 n L(1/2).n L(0/1).w L(0/2).(k ys) yr*, gmmstyle(L2.n L.(w k)) ivstyle(L(0/2).ys yr*) robust small

      7. We can, and mostly should, impose limits on the lags used as instruments in order to reduce the number of instruments.
      xtabond2 n L(1/2).n L(0/1).w L(0/2).(k ys) yr*,
      gmmstyle(L2.n L.(w k), laglimits(1 3)) ivstyle(L(0/2).ys yr*)
      robust small.

      The above command says to take as GMM instruments, L2.n, L.w and L.k lagged once, twice and three times.
      Note that gmmstyle(L2.n) is equivalent to gmmstyle(n, laglimits(3 .), the dot indicating to go backwards till the start of the sample


      Comment


      • #4
        More on GMM estimation of dynamic panel models (with a focus on another command as an alternative to xtabond2):
        XTDPDGMM: new Stata command for efficient GMM estimation of linear (dynamic) panel models with nonlinear moment conditions
        https://www.kripfganz.de/stata/

        Comment


        • #5
          Dear Eric, Sebastian and Roman,

          First of all, thank you very much for your reply. You provide me a deep-understanding of using xtabond2. I try to write the code, but honestly, I am not self-confident. Back to my question, I need to code for this:

          lag2 and lag3 of the levels of firm performance variable (lnTobin), corporate governance variables (female, nonexe, dual, lnsize) and control variables (fsize lev) are employed as GMM-type instrumental variables for the first-differenced equation. Meanwhile, first lagged differences of firm performance, corporate governance, and control variables are used as GMM-type instruments for the levels equation. Firm age (lnage) anf year dummies are exogenously determined


          My code is: xtabond2 lnTobin L.lnTobin female nonexe dual lnsize fsize lev lnage i.year i.firmid, gmm(L.lnTobin,lag(1 2)) gmm(female nonexe dual lnsize fsize lev,lag(1 1)) iv(lnage i.year ) small two

          I use i.year and i.firmid to control firm-fixed effect and year-fixed effect. So, from your point of view, my code is reasonable or not?

          Also, I have 1355 observations and the number of instruments are 247. Is it too many instruments?

          Moreover, choosing lag2 and lag3 as I am doing depends on each research, right? I mean that I can choose any levels of lag as long as system GMM gives me the good results? I am sorry if this question is stupid, but the more I read, the more confused I feel

          In addition, do all of my explanatory variables have to be listed under gmm() or iv(). Because apart from variables in my code, I want to add two variables: after (dummy variable takes value of 1 if after crisis) and after*female (interaction variable) to my original equation in order to examine the effect of crisis for robustness check.

          I look forward to hearing from you.

          Regards.
          Celine.



          Comment


          • #6
            Hi Celine,

            I will let the experts help on your more specific questions.

            If not already done so, on your questions on the number of instruments, my advice is to carefully read Roodman's "A note on the theme of too many instruments" (see link below). In particular, in xtabond2 regression output make sure that you note the Hansen test of joint significance of instrument p-value. He mentions techniques to reduce instrument count like using "collapse" sub-option.

            https://www.cgdev.org/publication/no...king-paper-125

            Best,
            Roman

            Comment


            • #7
              1. Since Roman mentioned the Hansen test, note that there is a bug in xtabond2 that results in incorrect degrees of freedom for the overidentification test if time dummies (and possibly other dummies as well) are specified with the factor variable notation. Some dummies will be "omitted" from the regression due to the dynamic nature of the model but xtabond2 still lists them in the regression output. Moreover, it counts those variables as if there coefficients were estimated. As a consequence, the number of overidentifying restrictions is computed incorrectly. This in turn implies that the p-values from the overidentification tests are incorrect. To deal with this problem, you need to generate your time dummies as new variables first and then specify the correct number of them separately as regressors such that none of them is shown as "omitted". (The same applies to any other variable shown as "ommited".) Alternatively, you could use the xtdpdgmm command that I referenced earlier which has the option teffects that automatically adds the right number of time dummies and corresponding instruments.
              2. You have specified firm dummies as regressors. If you want to do that, you also need to specify them as standard instruments (similar to time dummies). That said, your data appears to contain observations at the firm level. You then do not explicitly specify these firm-fixed effects at all. The idea of the GMM estimator is to treat those as unobserved effects and find instrumental variables that are uncorrelated with them.
              3. I highly recommend to always specify the instruments for the first-differenced model and the level model separately with the suboption equation(diff) or equation(level). The default specification is easily misunderstood with unintended consequences. In particular the iv() option without an explicit specification of the equation is most likely not doing what you think it does.
              4. I second Roman's recommendation to use the collapse suboption to reduce the number of instruments. Your large number of instruments indicates that the number of time periods in your data set is possibly relatively large. You want to keep in mind that these methods are designed for "small T, large N" data sets.
              5. With a complete set of time dummies, you cannot add a post-crisis dummy because it would be perfectly collinear with the time dummies. However, you can add the interaction effect. You can as well add the interaction effect as an instrument similar to your variable female.
              6. With the twostep estimator, you certainly should use robust standard errors (with the Windmeijer correction).
              7. Besides the Hansen test, you also want to check the Arellano-Bond AR(2) test. The chosen lags of the dependent variable are only valid instruments if there is no second-order serial correlation in the first-differenced error term.
              https://www.kripfganz.de/stata/

              Comment


              • #8
                Dear Roman and Sebastian,

                Thank you very much for your reply. I think it will be better if I show you the result of my regression using xtabond2. However, I do not how to post it here. Now, I only know how to post the code. Could you please teach me?

                Regards,
                Celine

                Comment


                • #9
                  You can post the results in the same way as you post code by copying the results from Stata and posting them here with CODE delimiters:
                  Statalist FAQ 12.3
                  https://www.kripfganz.de/stata/

                  Comment


                  • #10
                    Dear Sebastian,

                    Thank you very much for your support. I post my results with alternative suboptions. lnTobin is firm performance, PerFD is female, AfterFD is the interaction between female and after crisis. After takes value 1 if year is greater than 2009.

                    **** Fist, with collapse and no robust

                    Code:
                    xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize blev i.ind i.year if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev,lag(2 3) collapse) iv(After lnage i.year ) small two

                    Code:
                     xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize blev i.ind i.year if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Firms
                    > ize blev,lag(2 3) collapse) iv(After lnage i.year ) small two
                    Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
                    Warning: Two-step estimated covariance matrix of moments is singular.
                      Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
                      Difference-in-Sargan/Hansen statistics may be negative.
                    
                    Dynamic panel-data estimation, two-step system GMM
                    ------------------------------------------------------------------------------
                    Group variable: firmid                          Number of obs      =       394
                    Time variable : year                            Number of groups   =        56
                    Number of instruments = 43                      Obs per group: min =         2
                    F(34, 55)     =     24.87                                      avg =      7.04
                    Prob > F      =     0.000                                      max =         9
                    ------------------------------------------------------------------------------
                         lnTobin |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                         lnTobin |
                             L1. |   .3523711   .1262988     2.79   0.007     .0992626    .6054796
                                 |
                           PerFD |  -1.335537   .7433627    -1.80   0.078    -2.825269    .1541949
                           After |   .2200987   .1249274     1.76   0.084    -.0302614    .4704588
                         AfterFD |  -1.604136   .8986387    -1.79   0.080    -3.405048    .1967763
                          PerInD |    .135925   .5363142     0.25   0.801    -.9388727    1.210723
                            Dual |   .0342689   .2775003     0.12   0.902    -.5218542    .5903919
                           bsize |   .2977324   .3432733     0.87   0.390    -.3902027    .9856675
                           lnage |  -.0100809   .1031349    -0.10   0.922    -.2167679    .1966061
                        Firmsize |  -.1116272   .1324036    -0.84   0.403      -.37697    .1537155
                            blev |  -.0135714   .3042264    -0.04   0.965    -.6232548    .5961119
                                 |
                             ind |
                              1  |          0  (empty)
                              2  |   1.660029   1.632061     1.02   0.314    -1.610694    4.930753
                              3  |   1.129424   1.440401     0.78   0.436    -1.757205    4.016053
                              5  |   .4687588   1.508648     0.31   0.757     -2.55464    3.492157
                              6  |  -2.018105   4.693255    -0.43   0.669     -11.4236    7.387388
                              7  |   2.196901   1.224097     1.79   0.078    -.2562451    4.650046
                                 |
                            year |
                           2000  |          0  (empty)
                           2001  |    .598396   1.557236     0.38   0.702    -2.522374    3.719166
                           2002  |   .5599786    1.44977     0.39   0.701    -2.345426    3.465383
                           2003  |   .7640272   1.398761     0.55   0.587    -2.039153    3.567207
                           2004  |   .8489094   1.400778     0.61   0.547    -1.958312    3.656131
                           2005  |   .8253656   1.484976     0.56   0.581    -2.150592    3.801323
                           2006  |   .7962406   1.458897     0.55   0.587    -2.127455    3.719936
                           2007  |   .8973492   1.502829     0.60   0.553    -2.114387    3.909086
                           2008  |   .4647732   1.481119     0.31   0.755    -2.503455    3.433001
                           2009  |   .6074323    1.46098     0.42   0.679    -2.320437    3.535301
                           2010  |   .7878192    1.49764     0.53   0.601    -2.213518    3.789157
                           2011  |   .7057252   1.530876     0.46   0.647    -2.362219    3.773669
                           2012  |   .7614529   1.539492     0.49   0.623    -2.323757    3.846663
                           2013  |   .7369199   1.525574     0.48   0.631    -2.320399    3.794239
                           2014  |   .5892848   1.486905     0.40   0.693    -2.390539    3.569109
                           2015  |   .5317266   1.481738     0.36   0.721    -2.437743    3.501196
                           2016  |   .4323573   1.473709     0.29   0.770    -2.521022    3.385737
                           2017  |   .4389145    1.42488     0.31   0.759    -2.416609    3.294438
                                 |
                           _cons |          0  (omitted)
                    ------------------------------------------------------------------------------
                    Warning: Uncorrected two-step standard errors are unreliable.
                    
                    Instruments for first differences equation
                      Standard
                        D.(After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year
                        2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
                        2012.year 2013.year 2014.year 2015.year 2016.year 2017.year)
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        L(2/3).(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                    Instruments for levels equation
                      Standard
                        After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year 2005.year
                        2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year
                        2013.year 2014.year 2015.year 2016.year 2017.year
                        _cons
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        DL.(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                    ------------------------------------------------------------------------------
                    Arellano-Bond test for AR(1) in first differences: z =  -3.88  Pr > z =  0.000
                    Arellano-Bond test for AR(2) in first differences: z =  -1.25  Pr > z =  0.212
                    ------------------------------------------------------------------------------
                    Sargan test of overid. restrictions: chi2(8)    =  12.96  Prob > chi2 =  0.113
                      (Not robust, but not weakened by many instruments.)
                    Hansen test of overid. restrictions: chi2(8)    =   8.76  Prob > chi2 =  0.363
                      (Robust, but weakened by many instruments.)
                    
                    Difference-in-Hansen tests of exogeneity of instrument subsets:
                      GMM instruments for levels
                        Hansen test excluding group:     chi2(0)    =   3.09  Prob > chi2 =      . --> why missing is here? 
                        Difference (null H = exogenous): chi2(8)    =   5.67  Prob > chi2 =  0.685

                    *** Second, with collapse and robust

                    Code:
                    xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize blev i.ind i.year if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev,lag(2 3) collapse) iv(After lnage i.year ) small two ro
                    Code:
                    . xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize
                    >  blev i.ind i.year if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Fir
                    > msize blev,lag(2 3) collapse) iv(After lnage i.year ) ro small two
                    Favoring space over speed. To switch, type or click on mata: mata set matafavor s
                    > peed, perm.
                    Warning: Two-step estimated covariance matrix of moments is singular.
                      Using a generalized inverse to calculate optimal weighting matrix for two-step
                    > estimation.
                      Difference-in-Sargan/Hansen statistics may be negative.
                    
                    Dynamic panel-data estimation, two-step system GMM
                    ------------------------------------------------------------------------------
                    Group variable: firmid                          Number of obs      =       394
                    Time variable : year                            Number of groups   =        56
                    Number of instruments = 43                      Obs per group: min =         2
                    F(34, 55)     =      8.58                                      avg =      7.04
                    Prob > F      =     0.000                                      max =         9
                    ------------------------------------------------------------------------------
                                 |              Corrected
                         lnTobin |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                         lnTobin |
                             L1. |   .3523711   .2737338     1.29   0.203    -.1962038     .900946
                                 |
                           PerFD |  -1.335537   1.405996    -0.95   0.346    -4.153216    1.482142
                           After |   .2200987   .2543287     0.87   0.391    -.2895874    .7297847
                         AfterFD |  -1.604136   1.855624    -0.86   0.391     -5.32289    2.114618
                          PerInD |    .135925   .7967396     0.17   0.865    -1.460777    1.732627
                            Dual |   .0342689     .48426     0.07   0.944    -.9362098    1.004747
                           bsize |   .2977324   .5603885     0.53   0.597    -.8253113    1.420776
                           lnage |  -.0100809   .1637304    -0.06   0.951    -.3382039    .3180421
                        Firmsize |  -.1116272   .2365352    -0.47   0.639    -.5856544    .3623999
                            blev |  -.0135714   .5798735    -0.02   0.981    -1.175664    1.148521
                                 |
                             ind |
                              1  |          0  (empty)
                              2  |   1.660029   3.001084     0.55   0.582    -4.354278    7.674337
                              3  |   1.129424   2.092185     0.54   0.591    -3.063409    5.322257
                              5  |   .4687588   2.291292     0.20   0.839    -4.123093    5.060611
                              6  |  -2.018105   6.388229    -0.32   0.753     -14.8204    10.78419
                              7  |   2.196901   2.378022     0.92   0.360    -2.568763    6.962564
                                 |
                            year |
                           2000  |          0  (empty)
                           2001  |    .598396   2.870038     0.21   0.836    -5.153288     6.35008
                           2002  |   .5599786   2.640404     0.21   0.833    -4.731509    5.851466
                           2003  |   .7640272   2.550259     0.30   0.766    -4.346807    5.874861
                           2004  |   .8489094    2.56314     0.33   0.742    -4.287738    5.985557
                           2005  |   .8253656   2.704881     0.31   0.761    -4.595336    6.246067
                           2006  |   .7962406   2.613533     0.30   0.762    -4.441397    6.033878
                           2007  |   .8973492   2.716127     0.33   0.742    -4.545891     6.34059
                           2008  |   .4647732   2.663777     0.17   0.862    -4.873555    5.803101
                           2009  |   .6074323   2.588356     0.23   0.815    -4.579749    5.794614
                           2010  |   .7878192   2.676292     0.29   0.770    -4.575589    6.151227
                           2011  |   .7057252   2.723513     0.26   0.797    -4.752316    6.163767
                           2012  |   .7614529   2.746721     0.28   0.783    -4.743098    6.266004
                           2013  |   .7369199   2.719152     0.27   0.787    -4.712383    6.186223
                           2014  |   .5892848   2.651494     0.22   0.825    -4.724427    5.902997
                           2015  |   .5317266   2.623048     0.20   0.840     -4.72498    5.788433
                           2016  |   .4323573   2.622975     0.16   0.870    -4.824202    5.688917
                           2017  |   .4389145   2.381903     0.18   0.854    -4.334525    5.212354
                                 |
                           _cons |          0  (omitted)
                    ------------------------------------------------------------------------------
                    Instruments for first differences equation
                      Standard
                        D.(After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year
                        2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
                        2012.year 2013.year 2014.year 2015.year 2016.year 2017.year)
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        L(2/3).(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                    Instruments for levels equation
                      Standard
                        After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year 2005.year
                        2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year
                        2013.year 2014.year 2015.year 2016.year 2017.year
                        _cons
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        DL.(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                    ------------------------------------------------------------------------------
                    Arellano-Bond test for AR(1) in first differences: z =  -2.38  Pr > z =  0.017
                    Arellano-Bond test for AR(2) in first differences: z =  -1.22  Pr > z =  0.223
                    ------------------------------------------------------------------------------
                    Sargan test of overid. restrictions: chi2(8)    =  12.96  Prob > chi2 =  0.113
                      (Not robust, but not weakened by many instruments.)
                    Hansen test of overid. restrictions: chi2(8)    =   8.76  Prob > chi2 =  0.363
                      (Robust, but weakened by many instruments.)
                    
                    Difference-in-Hansen tests of exogeneity of instrument subsets:
                      GMM instruments for levels
                        Hansen test excluding group:     chi2(0)    =   3.09  Prob > chi2 =      . --> why missing is here? 
                        Difference (null H = exogenous): chi2(8)    =   5.67  Prob > chi2 =  0.685
                    ***** Third, no collapse and no robust

                    Code:
                    . xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize
                    >  blev i.ind i.year if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Fir
                    > msize blev,lag(2 3)) iv(After lnage i.year )small two
                    Favoring space over speed. To switch, type or click on mata: mata set matafavor s
                    > peed, perm.
                    Warning: Number of instruments may be large relative to number of observations.
                    Warning: Two-step estimated covariance matrix of moments is singular.
                      Using a generalized inverse to calculate optimal weighting matrix for two-step 
                    > estimation.
                      Difference-in-Sargan/Hansen statistics may be negative.
                    
                    Dynamic panel-data estimation, two-step system GMM
                    ------------------------------------------------------------------------------
                    Group variable: firmid                          Number of obs      =       394
                    Time variable : year                            Number of groups   =        56
                    Number of instruments = 312                     Obs per group: min =         2
                    F(34, 55)     =    339.92                                      avg =      7.04
                    Prob > F      =     0.000                                      max =         9
                    ------------------------------------------------------------------------------
                         lnTobin |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                         lnTobin |
                             L1. |   .4805961   .1164257     4.13   0.000     .2472738    .7139184
                                 |
                           PerFD |  -1.222444   .6661775    -1.84   0.072    -2.557494    .1126054
                           After |  -.1627964   .0633084    -2.57   0.013    -.2896693   -.0359234
                         AfterFD |   1.225304   .4666851     2.63   0.011     .2900464    2.160562
                          PerInD |   -.457154   .5229581    -0.87   0.386    -1.505185    .5908775
                            Dual |  -.0101742   .2949687    -0.03   0.973    -.6013047    .5809563
                           bsize |   .1682281   .2121327     0.79   0.431    -.2568954    .5933515
                           lnage |  -.0821159   .0638534    -1.29   0.204     -.210081    .0458491
                        Firmsize |   .0280868   .0778619     0.36   0.720    -.1279519    .1841255
                            blev |  -.4371834   .7731266    -0.57   0.574    -1.986564    1.112197
                                 |
                             ind |
                              1  |          0  (empty)
                              2  |   .2839798   .4913256     0.58   0.566    -.7006587    1.268618
                              3  |   .9052594   .8157604     1.11   0.272     -.729561     2.54008
                              5  |    .636241    .520303     1.22   0.227    -.4064695    1.678951
                              6  |   2.023066   1.879392     1.08   0.286    -1.743319    5.789451
                              7  |   -.248122   .4014496    -0.62   0.539    -1.052645     .556401
                                 |
                            year |
                           2000  |          0  (empty)
                           2001  |  -.4299022   1.179521    -0.36   0.717    -2.793715     1.93391
                           2002  |  -.6989236   1.223122    -0.57   0.570    -3.150115    1.752268
                           2003  |  -.5474336   1.222013    -0.45   0.656    -2.996403    1.901536
                           2004  |  -.4911667   1.207034    -0.41   0.686    -2.910116    1.927783
                           2005  |  -.6310194   1.212388    -0.52   0.605    -3.060699     1.79866
                           2006  |   -.515228   1.191069    -0.43   0.667    -2.902183    1.871727
                           2007  |  -.4534177   1.204957    -0.38   0.708    -2.868205     1.96137
                           2008  |  -.8319659   1.205972    -0.69   0.493    -3.248788    1.584857
                           2009  |  -.5871443   1.205153    -0.49   0.628    -3.002325    1.828036
                           2010  |  -.5057532    1.19638    -0.42   0.674    -2.903352    1.891845
                           2011  |  -.6096166   1.204785    -0.51   0.615     -3.02406    1.804827
                           2012  |  -.5043277    1.19809    -0.42   0.675    -2.905354    1.896699
                           2013  |   -.480569    1.19136    -0.40   0.688    -2.868109    1.906971
                           2014  |  -.5283059   1.193195    -0.44   0.660    -2.919523    1.862911
                           2015  |  -.5092208   1.187362    -0.43   0.670    -2.888747    1.870305
                           2016  |  -.5385176   1.193336    -0.45   0.654    -2.930016    1.852981
                           2017  |  -.3987228   1.191879    -0.33   0.739    -2.787301    1.989855
                                 |
                           _cons |          0  (omitted)
                    ------------------------------------------------------------------------------
                    Warning: Uncorrected two-step standard errors are unreliable.
                    
                    Instruments for first differences equation
                      Standard
                        D.(After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year
                        2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
                        2012.year 2013.year 2014.year 2015.year 2016.year 2017.year)
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        L(2/3).(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev)
                    Instruments for levels equation
                      Standard
                        After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year 2005.year
                        2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year
                        2013.year 2014.year 2015.year 2016.year 2017.year
                        _cons
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        DL.(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev)
                    ------------------------------------------------------------------------------
                    Arellano-Bond test for AR(1) in first differences: z =  -3.10  Pr > z =  0.002
                    Arellano-Bond test for AR(2) in first differences: z =  -0.72  Pr > z =  0.469
                    ------------------------------------------------------------------------------
                    Sargan test of overid. restrictions: chi2(277)  = 299.23  Prob > chi2 =  0.171
                      (Not robust, but not weakened by many instruments.)
                    Hansen test of overid. restrictions: chi2(277)  =  18.53  Prob > chi2 =  1.000
                      (Robust, but weakened by many instruments.)
                    
                    Difference-in-Hansen tests of exogeneity of instrument subsets:
                      GMM instruments for levels
                        Hansen test excluding group:     chi2(183)  =  19.62  Prob > chi2 =  1.000
                        Difference (null H = exogenous): chi2(94)   =  -1.09  Prob > chi2 =  1.000
                      iv(After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year 2005.year 200
                    > 6.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 20
                    > 14.year 2015.year 2016.year 2017.year)
                        Hansen test excluding group:     chi2(259)  =  21.13  Prob > chi2 =  1.000
                        Difference (null H = exogenous): chi2(18)   =  -2.60  Prob > chi2 =  1.000
                    *** Fourth, no collapse and robust

                    Code:
                    . xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize
                    >  blev i.ind i.year if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Fir
                    > msize blev,lag(2 3)) iv(After lnage i.year )small two ro
                    Favoring space over speed. To switch, type or click on mata: mata set matafavor s
                    > peed, perm.
                    Warning: Number of instruments may be large relative to number of observations.
                    Warning: Two-step estimated covariance matrix of moments is singular.
                      Using a generalized inverse to calculate optimal weighting matrix for two-step 
                    > estimation.
                      Difference-in-Sargan/Hansen statistics may be negative.
                    
                    Dynamic panel-data estimation, two-step system GMM
                    ------------------------------------------------------------------------------
                    Group variable: firmid                          Number of obs      =       394
                    Time variable : year                            Number of groups   =        56
                    Number of instruments = 312                     Obs per group: min =         2
                    F(34, 55)     =      6.17                                      avg =      7.04
                    Prob > F      =     0.000                                      max =         9
                    ------------------------------------------------------------------------------
                                 |              Corrected
                         lnTobin |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                         lnTobin |
                             L1. |   .4805961   .1783996     2.69   0.009     .1230753     .838117
                                 |
                           PerFD |  -1.222444   .9406888    -1.30   0.199    -3.107627    .6627385
                           After |  -.1627964   .0735426    -2.21   0.031     -.310179   -.0154137
                         AfterFD |   1.225304   .5153084     2.38   0.021      .192603    2.258005
                          PerInD |   -.457154   .8177292    -0.56   0.578     -2.09592    1.181612
                            Dual |  -.0101742   .3781457    -0.03   0.979    -.7679952    .7476467
                           bsize |   .1682281   .3834558     0.44   0.663    -.6002345    .9366907
                           lnage |  -.0821159    .100776    -0.81   0.419    -.2840756    .1198437
                        Firmsize |   .0280868   .1502255     0.19   0.852    -.2729717    .3291453
                            blev |  -.4371834    1.26591    -0.35   0.731    -2.974123    2.099756
                                 |
                             ind |
                              1  |          0  (empty)
                              2  |   .2839798   .5457866     0.52   0.605     -.809801    1.377761
                              3  |   .9052594    .944352     0.96   0.342    -.9872643    2.797783
                              5  |    .636241   .2713932     2.34   0.023     .0923569    1.180125
                              6  |   2.023066    2.34787     0.86   0.393    -2.682171    6.728303
                              7  |   -.248122   .7343882    -0.34   0.737    -1.719869    1.223625
                                 |
                            year |
                           2000  |          0  (empty)
                           2001  |  -.4299022   1.994269    -0.22   0.830    -4.426506    3.566702
                           2002  |  -.6989236    2.05256    -0.34   0.735    -4.812346    3.414499
                           2003  |  -.5474336   2.038021    -0.27   0.789     -4.63172    3.536852
                           2004  |  -.4911667   2.015566    -0.24   0.808    -4.530452    3.548119
                           2005  |  -.6310194   2.005022    -0.31   0.754    -4.649174    3.387135
                           2006  |   -.515228   1.956104    -0.26   0.793    -4.435349    3.404893
                           2007  |  -.4534177   1.978784    -0.23   0.820     -4.41899    3.512155
                           2008  |  -.8319659   1.989813    -0.42   0.677    -4.819641    3.155709
                           2009  |  -.5871443   1.986463    -0.30   0.769    -4.568106    3.393817
                           2010  |  -.5057532    1.99128    -0.25   0.800    -4.496367     3.48486
                           2011  |  -.6096166   1.998539    -0.31   0.761    -4.614778    3.395545
                           2012  |  -.5043277   1.989052    -0.25   0.801    -4.490478    3.481822
                           2013  |   -.480569   1.976756    -0.24   0.809    -4.442076    3.480938
                           2014  |  -.5283059   1.992078    -0.27   0.792     -4.52052    3.463908
                           2015  |  -.5092208   1.959989    -0.26   0.796    -4.437128    3.418686
                           2016  |  -.5385176   1.955282    -0.28   0.784     -4.45699    3.379955
                           2017  |  -.3987228   1.951972    -0.20   0.839    -4.310563    3.513117
                                 |
                           _cons |          0  (omitted)
                    ------------------------------------------------------------------------------
                    Instruments for first differences equation
                      Standard
                        D.(After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year
                        2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
                        2012.year 2013.year 2014.year 2015.year 2016.year 2017.year)
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        L(2/3).(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev)
                    Instruments for levels equation
                      Standard
                        After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year 2005.year
                        2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year
                        2013.year 2014.year 2015.year 2016.year 2017.year
                        _cons
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                        DL.(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev)
                    ------------------------------------------------------------------------------
                    Arellano-Bond test for AR(1) in first differences: z =  -2.67  Pr > z =  0.007
                    Arellano-Bond test for AR(2) in first differences: z =  -0.68  Pr > z =  0.499
                    ------------------------------------------------------------------------------
                    Sargan test of overid. restrictions: chi2(277)  = 299.23  Prob > chi2 =  0.171
                      (Not robust, but not weakened by many instruments.)
                    Hansen test of overid. restrictions: chi2(277)  =  18.53  Prob > chi2 =  1.000
                      (Robust, but weakened by many instruments.)
                    
                    Difference-in-Hansen tests of exogeneity of instrument subsets:
                      GMM instruments for levels
                        Hansen test excluding group:     chi2(183)  =  19.62  Prob > chi2 =  1.000
                        Difference (null H = exogenous): chi2(94)   =  -1.09  Prob > chi2 =  1.000
                      iv(After lnage 2000b.year 2001.year 2002.year 2003.year 2004.year 2005.year 200
                    > 6.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 20
                    > 14.year 2015.year 2016.year 2017.year)
                        Hansen test excluding group:     chi2(259)  =  21.13  Prob > chi2 =  1.000
                        Difference (null H = exogenous): chi2(18)   =  -2.60  Prob > chi2 =  1.000
                    Which one is better? Or all of them are wrong?

                    Please give me some advice.

                    Thank you very much.


                    Regards,
                    Celine
                    Last edited by Celine Tran; 24 Nov 2018, 22:16.

                    Comment


                    • #11
                      Please see again my comment #7 above, in particular points 1, 3, and 6. (Point 1 applies both to "omitted" and "empty" coefficients.)

                      You should use the collapse option because your number of instruments otherwise becomes too large. You should always use robust standard errors.
                      https://www.kripfganz.de/stata/

                      Comment


                      • #12
                        Dear Sebastian,

                        Thank you for your reply. Based on your suggestion,
                        you need to generate your time dummies as new variables first and then specify the correct number of them separately as regressors such that none of them is shown as "omitted". (The same applies to any other variable shown as "ommited".
                        , I correct my command and get the result as follows:

                        Code:
                        xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize blev i.ind y* if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev,lag(2 3) equation(diff) collapse) gmm(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev,lag(1 1) equation(level) collapse) iv(After lnage y*) small two ro
                        Code:
                        Dynamic panel-data estimation, two-step system GMM
                        ------------------------------------------------------------------------------
                        Group variable: firmid                          Number of obs      =       394
                        Time variable : year                            Number of groups   =        56
                        Number of instruments = 45                      Obs per group: min =         2
                        F(37, 55)     =      8.76                                      avg =      7.04
                        Prob > F      =     0.000                                      max =         9
                        ------------------------------------------------------------------------------
                                     |              Corrected
                             lnTobin |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                        -------------+----------------------------------------------------------------
                             lnTobin |
                                 L1. |   .4404488   .3807097     1.16   0.252    -.3225105    1.203408
                                     |
                               PerFD |  -.8225264   1.230141    -0.67   0.507    -3.287784    1.642731
                               After |   .1176677   .1190995     0.99   0.327    -.1210131    .3563485
                             AfterFD |  -.9201294   1.632729    -0.56   0.575    -4.192191    2.351932
                              PerInD |  -.0460676   1.726423    -0.03   0.979    -3.505896    3.413761
                                Dual |   .0641464   .8186248     0.08   0.938    -1.576414    1.704707
                               bsize |    .150266   .5300142     0.28   0.778    -.9119061    1.212438
                               lnage |   .0095337   .1948223     0.05   0.961    -.3808989    .3999662
                            Firmsize |  -.0507002   .3396815    -0.15   0.882    -.7314372    .6300367
                                blev |   -.220553   .9226703    -0.24   0.812    -2.069626     1.62852
                                     |
                                 ind |
                                  1  |          0  (empty)
                                  2  |   2.302091   3.416848     0.67   0.503    -4.545425    9.149607
                                  3  |   2.421364   3.322556     0.73   0.469    -4.237187    9.079915
                                  5  |   2.137224   3.386171     0.63   0.531    -4.648815    8.923262
                                  6  |  -2.375508   6.733962    -0.35   0.726    -15.87067    11.11965
                                  7  |   .7392281   1.464321     0.50   0.616    -2.195336    3.673792
                                     |
                                year |  -.0005673   .0022124    -0.26   0.799    -.0050011    .0038665
                               year1 |  -.4763549   .5060122    -0.94   0.351    -1.490426    .5377162
                               year2 |   .4678886    .520104     0.90   0.372    -.5744232      1.5102
                               y2000 |          0  (omitted)
                               y2001 |   .4996831   2.856119     0.17   0.862    -5.224108    6.223474
                               y2002 |   .1572196   2.482985     0.06   0.950    -4.818794    5.133233
                               y2003 |   .1615077   2.127877     0.08   0.940    -4.102853    4.425868
                               y2004 |   .1740824    2.02272     0.09   0.932     -3.87954    4.227704
                               y2005 |   .1318876   1.908488     0.07   0.945    -3.692807    3.956582
                               y2006 |   .2134917   1.626055     0.13   0.896    -3.045194    3.472178
                               y2007 |   .2938357   1.594246     0.18   0.854    -2.901105    3.488777
                               y2008 |   -.139344   1.522774    -0.09   0.927    -3.191052    2.912364
                               y2009 |   .0060844    1.23767     0.00   0.996    -2.474262    2.486431
                               y2010 |   .1670342   1.190685     0.14   0.889    -2.219153    2.553221
                               y2011 |   .0636042   1.171887     0.05   0.957    -2.284911    2.412119
                               y2012 |   .1842879   1.043534     0.18   0.860       -1.907    2.275576
                               y2013 |   .2021841   .9765195     0.21   0.837    -1.754805    2.159173
                               y2014 |   .0727739   .8281574     0.09   0.930    -1.586891    1.732438
                               y2015 |   .1036465   .6197596     0.17   0.868     -1.13838    1.345672
                               y2016 |   .0880124   .4546119     0.19   0.847    -.8230502     .999075
                               y2017 |          0  (omitted)
                               _cons |          0  (omitted)
                        ------------------------------------------------------------------------------
                        Instruments for first differences equation
                          Standard
                            D.(After lnage year year1 year2 y2000 y2001 y2002 y2003 y2004 y2005 y2006
                            y2007 y2008 y2009 y2010 y2011 y2012 y2013 y2014 y2015 y2016 y2017)
                          GMM-type (missing=0, separate instruments for each period unless collapsed)
                            L(2/3).(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                        Instruments for levels equation
                          Standard
                            After lnage year year1 year2 y2000 y2001 y2002 y2003 y2004 y2005 y2006
                            y2007 y2008 y2009 y2010 y2011 y2012 y2013 y2014 y2015 y2016 y2017
                            _cons
                          GMM-type (missing=0, separate instruments for each period unless collapsed)
                            DL.(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                        ------------------------------------------------------------------------------
                        Arellano-Bond test for AR(1) in first differences: z =  -1.75  Pr > z =  0.080
                        Arellano-Bond test for AR(2) in first differences: z =  -1.06  Pr > z =  0.288
                        ------------------------------------------------------------------------------
                        Sargan test of overid. restrictions: chi2(7)    =  10.40  Prob > chi2 =  0.167
                          (Not robust, but not weakened by many instruments.)
                        Hansen test of overid. restrictions: chi2(7)    =   8.76  Prob > chi2 =  0.270
                          (Robust, but weakened by many instruments.)
                        However, Diff-in-Hansen tests of exogeneity disappear. Could you please explain why?

                        Moreover, in the case of that p-value of Hansen test excluding group is missing, does it mean? Could you please give me the explanation?

                        Code:
                        Difference-in-Hansen tests of exogeneity of instrument subsets:
                          GMM instruments for levels
                            Hansen test excluding group:     chi2(0)    =   3.09  Prob > chi2 =      .
                            Difference (null H = exogenous): chi2(8)    =   5.67  Prob > chi2 =  0.685

                        Thank you very much.

                        Regards,
                        Anh.


                        Last edited by Celine Tran; 26 Nov 2018, 01:00.

                        Comment


                        • #13
                          The problem with your time dummies is still not solved. Using y* with the placeholder is dangerous because it includes all variables that start with y, not just the time dummies. Try y2000-y2017 instead. With the industry dummies, you have the same problem. None of the coefficients in the regression output should be listed as "(omitted)" or "(empty)". If you deal with these problems, the concern about the Hansen test might be addressed automatically because it is related to this problem.
                          https://www.kripfganz.de/stata/

                          Comment


                          • #14
                            Dear Sebastian,

                            I try to do as your suggestion, but results does not change. Please have a look.

                            Code:
                            xtabond2 lnTobin L.lnTobin PerFD After AfterFD PerInD Dual bsize lnage Firmsize blev ind1-ind7 y2000-y2017 if year1!=0, gmm(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev,lag(2 3) collapse) iv(After lnage y2000-y2017) small two ro
                            Code:
                            Dynamic panel-data estimation, two-step system GMM
                            ------------------------------------------------------------------------------
                            Group variable: firmid                          Number of obs      =       394
                            Time variable : year                            Number of groups   =        56
                            Number of instruments = 43                      Obs per group: min =         2
                            F(35, 55)     =      8.31                                      avg =      7.04
                            Prob > F      =     0.000                                      max =         9
                            ------------------------------------------------------------------------------
                                         |              Corrected
                                 lnTobin |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            -------------+----------------------------------------------------------------
                                 lnTobin |
                                     L1. |   .3523711   .2741159     1.29   0.204    -.1969694    .9017116
                                         |
                                   PerFD |  -1.335537   1.407958    -0.95   0.347    -4.157149    1.486074
                                   After |   .2200987   .2546836     0.86   0.391    -.2902987    .7304961
                                 AfterFD |  -1.604136   1.858214    -0.86   0.392     -5.32808    2.119809
                                  PerInD |    .135925   .7978516     0.17   0.865    -1.463005    1.734855
                                    Dual |   .0342689   .4849358     0.07   0.944    -.9375642    1.006102
                                   bsize |   .2977324   .5611707     0.53   0.598    -.8268787    1.422344
                                   lnage |  -.0100809   .1639589    -0.06   0.951    -.3386618       .3185
                                Firmsize |  -.1116272   .2368653    -0.47   0.639     -.586316    .3630615
                                    blev |  -.0135714   .5806828    -0.02   0.981    -1.177286    1.150143
                                    ind1 |   2.018105   6.397145     0.32   0.754    -10.80206    14.83827
                                    ind2 |   3.678134   7.933658     0.46   0.645    -12.22127    19.57754
                                    ind3 |   3.147529   6.955576     0.45   0.653    -10.79176    17.08681
                                    ind4 |          0  (omitted)
                                    ind5 |   2.486864   6.943041     0.36   0.722     -11.4273    16.40103
                                    ind6 |          0  (omitted)
                                    ind7 |   4.215005   7.198206     0.59   0.561    -10.21052    18.64053
                                   y2000 |          0  (omitted)
                                   y2001 |  -1.419709   6.259732    -0.23   0.821    -13.96449    11.12507
                                   y2002 |  -1.458126   6.214618    -0.23   0.815     -13.9125    10.99625
                                   y2003 |  -1.254078   6.249519    -0.20   0.842    -13.77839    11.27024
                                   y2004 |  -1.169195   6.253608    -0.19   0.852     -13.7017    11.36331
                                   y2005 |  -1.192739   6.309744    -0.19   0.851    -13.83775    11.45227
                                   y2006 |  -1.221864   6.341947    -0.19   0.848    -13.93141    11.48768
                                   y2007 |  -1.120756   6.299741    -0.18   0.859    -13.74572    11.50421
                                   y2008 |  -1.553331   6.290769    -0.25   0.806    -14.16032    11.05365
                                   y2009 |  -1.410672   6.328202    -0.22   0.824    -14.09267    11.27133
                                   y2010 |  -1.230285   6.313336    -0.19   0.846    -13.88249    11.42192
                                   y2011 |  -1.312379   6.322832    -0.21   0.836    -13.98362    11.35886
                                   y2012 |  -1.256652   6.328579    -0.20   0.843    -13.93941     11.4261
                                   y2013 |  -1.281185    6.31299    -0.20   0.840     -13.9327    11.37033
                                   y2014 |   -1.42882    6.30573    -0.23   0.822    -14.06579    11.20815
                                   y2015 |  -1.486378   6.312048    -0.24   0.815    -14.13601    11.16325
                                   y2016 |  -1.585747   6.296255    -0.25   0.802    -14.20372    11.03223
                                   y2017 |   -1.57919   6.509219    -0.24   0.809    -14.62396    11.46558
                                   _cons |          0  (omitted)
                            ------------------------------------------------------------------------------
                            Instruments for first differences equation
                              Standard
                                D.(After lnage y2000 y2001 y2002 y2003 y2004 y2005 y2006 y2007 y2008 y2009
                                y2010 y2011 y2012 y2013 y2014 y2015 y2016 y2017)
                              GMM-type (missing=0, separate instruments for each period unless collapsed)
                                L(2/3).(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                            Instruments for levels equation
                              Standard
                                After lnage y2000 y2001 y2002 y2003 y2004 y2005 y2006 y2007 y2008 y2009
                                y2010 y2011 y2012 y2013 y2014 y2015 y2016 y2017
                                _cons
                              GMM-type (missing=0, separate instruments for each period unless collapsed)
                                DL.(lnTobin PerFD AfterFD PerInD Dual bsize Firmsize blev) collapsed
                            ------------------------------------------------------------------------------
                            Arellano-Bond test for AR(1) in first differences: z =  -2.38  Pr > z =  0.017
                            Arellano-Bond test for AR(2) in first differences: z =  -1.22  Pr > z =  0.223
                            ------------------------------------------------------------------------------
                            Sargan test of overid. restrictions: chi2(7)    =  12.96  Prob > chi2 =  0.073
                              (Not robust, but not weakened by many instruments.)
                            Hansen test of overid. restrictions: chi2(7)    =   8.76  Prob > chi2 =  0.271
                              (Robust, but weakened by many instruments.)
                            
                            
                            .
                            Do you have any suggestion for me?

                            Regards,
                            Celine

                            Comment


                            • #15
                              Why do you specify the if year1!=0 condition?

                              You need to specify the industry dummies in the list of instruments as well.

                              There is still perfect collinearity among the dummy variables. Please provide the Stata output of the following command after the estimation:
                              Code:
                              sum year if e(sample)
                              https://www.kripfganz.de/stata/

                              Comment

                              Working...
                              X