Dear Statalisters,
Perhaps a silly question, but I am trying to generate two variables: CEO delta and CEO vega using the formulas below. I am wondering if I am doing it right because some of the results I am getting are weird. For example: when I generate normal(d1) all results are 1, which seems strange to me because then the effect of varying values of d1 has no effect.
normalden(d1) give me 0 for all variables, which makes all values of vega also zero.
INPUTS
Z = d1 = (ln(S/X) + T(r - d + SIGMA^2/2) / SIGMA(T)^0.5
Stata Syntax used
N = normal()
N' = normalden()
euler's e = exp()
Option value formula definitions
* N = cumulative probability function for the normal distribution
* S = price of the underlying stock
* X = exercise price of the option
* sigma = the anticipated stock return volatility during the maturity period of the option
* r = natural logarithm of risk-free interest rate
* T = time to maturity of the option in years
* e = Euler's exponential base number
* d_w = natural logarithm of expected dividend yield over the life of the option
* N' = the (standard) normal density function
Perhaps a silly question, but I am trying to generate two variables: CEO delta and CEO vega using the formulas below. I am wondering if I am doing it right because some of the results I am getting are weird. For example: when I generate normal(d1) all results are 1, which seems strange to me because then the effect of varying values of d1 has no effect.
normalden(d1) give me 0 for all variables, which makes all values of vega also zero.
INPUTS
Z = d1 = (ln(S/X) + T(r - d + SIGMA^2/2) / SIGMA(T)^0.5
Stata Syntax used
N = normal()
N' = normalden()
euler's e = exp()
Option value formula definitions
* N = cumulative probability function for the normal distribution
* S = price of the underlying stock
* X = exercise price of the option
* sigma = the anticipated stock return volatility during the maturity period of the option
* r = natural logarithm of risk-free interest rate
* T = time to maturity of the option in years
* e = Euler's exponential base number
* d_w = natural logarithm of expected dividend yield over the life of the option
* N' = the (standard) normal density function
Code:
gen d1 = ((ln(S/X)) + (T*(r - d_w + (sigma^2/2)))) / sigma*(T^0.5) gen delta = (exp(-d_w*T))*(normal(d1))*(S/100) gen vega = (exp(-d_w*T))*(normalden(d1))*S*(T^0.5)*0.01
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long gvkey int fyear float(S X sigma r T) double d_w float(d1 delta normal normalden) 1004 2001 11.44 . 25.8477 .04898062 . .0139860138297081 . . . . 1004 2002 4.5 . 81.84596 .04506896 . .009770784759894013 . . . . 1004 2003 9.58 . 61.2466 .03931686 . .006513856506596009 . . . . 1004 2004 16.04 . 41.78387 .0418135 . .001851851896693309 . . . . 1004 2005 24.08 . 35.23833 .04200529 . 0 . . . . 1004 2006 32.5 14.96 34.55156 .04650184 6.109589 0 260.96475 .325 1 0 1004 2006 32.5 23.5 34.55156 .04659728 2.589041 0 71.989815 .325 1 0 1004 2006 32.5 22.41 34.55156 .04650184 4.3643837 0 157.5498 .325 1 0 1004 2006 32.5 14.96 34.55156 .04650184 4.3643837 0 157.57423 .325 1 0 1004 2006 32.5 16.18 34.55156 .04650184 6.109589 0 260.95917 .325 1 0 1004 2006 32.5 22.41 34.55156 .04650184 4.3643837 0 157.5498 .325 1 0 1004 2006 32.5 17.97 34.55156 .04650184 7.142466 0 329.8406 .325 1 0 1004 2006 32.5 22.41 34.55156 .04640637 5.109589 0 199.5737 .325 1 0 1004 2006 32.5 14.96 34.55156 .04650184 7.142466 0 329.8548 .325 1 0 1004 2006 32.5 16.18 34.55156 .04650184 6.109589 0 260.95917 .325 1 0 1004 2006 32.5 23.5 34.55156 .04707441 1.5863013 0 34.5302 .325 1 0 1004 2007 19.28 22.41 44.82449 .04258045 3.3643835 0 138.30652 .1928 1 0 1004 2007 19.28 22.41 44.82449 .0429637 4.109589 0 186.7178 .1928 1 0 1004 2007 19.28 16.18 44.82449 .0433468 5.109589 0 258.87964 .1928 1 0 1004 2007 19.28 . 44.82449 .04526013 . 0 . . . . 1004 2007 19.28 17.97 44.82449 .04372976 6.142466 0 341.2112 .1928 1 0 1004 2007 19.28 22.41 44.82449 .04258045 3.3643835 0 138.30652 .1928 1 0 1004 2007 19.28 23.5 44.82449 .04267627 1.589041 0 44.89032 .1928 1 0 1004 2007 19.28 16.18 44.82449 .0433468 5.109589 0 258.87964 .1928 1 0 1004 2008 14.7 16.18 78.14695 .024887715 4.106849 0 325.1961 .147 1 0 1004 2008 14.7 22.41 78.14695 .01990066 2.3616438 0 141.80157 .147 1 0 1004 2008 14.7 . 78.14695 .035946127 . 0 . . . . 1004 2008 14.7 22.41 78.14695 .022152804 3.1068494 0 213.9667 .147 1 0 1004 2008 14.7 22.41 78.14695 .01990066 2.3616438 0 141.80157 .147 1 0 1004 2008 14.7 16.18 78.14695 .024887715 4.106849 0 325.1961 .147 1 0 1004 2008 14.7 17.97 78.14695 .027615167 5.139726 0 455.2924 .147 1 0 1004 2009 19.7 15.1 48.77288 .032079894 10.120548 0 785.1919 .197 1 0 1004 2009 19.7 . 48.77288 .032079894 . 0 . . . . 1004 2009 19.7 22.41 48.77288 .009554213 2.1068494 0 74.57269 .197 1 0 1004 2009 19.7 16.18 48.77288 .014198719 3.1068494 0 133.55405 .197 1 0 1004 2009 19.7 17.97 48.77288 .018036364 4.139726 0 205.4095 .197 1 0 1004 2009 19.7 16.18 48.77288 .014198719 3.1068494 0 133.55405 .197 1 0 1004 2009 19.7 22.41 48.77288 .00468899 1.3616438 0 38.74457 .197 1 0 1004 2009 19.7 22.41 48.77288 .00468899 1.3616438 0 38.74457 .197 1 0 1004 2010 26.39 17.27 36.93339 .031692445 10.117808 .0009473285948236784 594.3813 .26138264 1 0 1004 2010 26.39 16.18 36.93339 .006975614 2.1068494 .0009473285948236784 56.49254 .2633738 1 0 1004 2010 26.39 15.1 36.93339 .02975296 9.120548 .0009473285948236784 508.719 .26162967 1 0 1004 2010 26.39 16.18 36.93339 .006975614 2.1068494 .0009473285948236784 56.49254 .2633738 1 0 1004 2010 26.39 22.41 36.93339 .003194891 1.1068493 .0009473285948236784 21.50886 .26362342 1 0 1004 2010 26.39 . 36.93339 .031692445 . .0009473285948236784 . . . . 1004 2010 26.39 17.97 36.93339 .011038847 3.139726 .0009473285948236784 102.75694 .26311624 1 0 1004 2011 12.05 17.27 46.87533 .025375307 9.117808 .009246083907783031 645.269 .1107578 1 0 1004 2011 12.05 16.18 46.87533 .001798382 1.1068493 .009246083907783031 27.285936 .1192731 1 0 1004 2011 12.05 . 46.87533 .027420595 . .009246083907783031 . . . . 1004 2011 12.05 16.18 46.87533 .001798382 1.1068493 .009246083907783031 27.285936 .1192731 1 0 end
Comment